english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/45028 Cómo citar
Título: On the 2-Selmer group of Jacobians of hyperelliptic curves
Autor: Barrera Salazar, Daniel
Pacetti, Ariel
Tornaría, Gonzalo
Tipo: Preprint
Descriptores: MATHEMATICS - NUMBER THEORY
Fecha de publicación: 2023
Resumen: Let C be a hyperelliptic curve y2=p(x) defined over a number field K with p(x) integral of odd degree. The purpose of the present article is to prove lower and upper bounds for the 2-Selmer group of the Jacobian of C in terms of the class group of the K-algebra K[x]/(p(x)). Our main result is a formula relating these two quantities under some mild hypothesis. We provide some examples that prove that our lower and upper bounds are as sharp as possible. As a first application, we study the rank distribution of the 2-Selmer group in families of quadratic twists. Under some extra hypothesis we prove that among prime quadratic twists, a positive proportion has fixed 2-Selmer group. As a second application, we study the family of octic twists of the genus 2 curve y2=x5+x.
Descripción: Versión permitida preprint.
Editorial: arXiv
EN: Mathematics (Number Theory), arXiv:2308.08663, ago. 2023, pp.1-27
Citación: Barrera Salazar, D, Pacetti, A y Tornaría, G. "On the 2-Selmer group of Jacobians of hyperelliptic curves" [Preprint]. Publicado en: Mathematics (Number Theory). 2023, arXiv:2308.08663, ago. 2023, pp.1-27. DOI: 10.48550/arXiv.2308.08663
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
2308.08663v1.pdfPreprint630,18 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons