Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/44820
Cómo citar
Título: | Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II: Branching foliations |
Autor: | Barthelmé, Thomas Fenley, Sergio Frankel, Steven Potrie Altieri, Rafael |
Tipo: | Artículo |
Descriptores: | PARTIAL HYPERBOLICITY, 3-MANIFOLDS, FOLIATIONS |
Fecha de publicación: | 2023 |
Resumen: | We study 3–dimensional partially hyperbolic diffeomorphisms that are homotopic to the identity, focusing on the geometry and dynamics of Burago and Ivanov’s center stable and center unstable branching foliations. This extends our previous study of the true foliations that appear in the dynamically coherent case. We complete the classification of such diffeomorphisms in Seifert fibered manifolds. In hyperbolic manifolds, we show that any such diffeomorphism is either dynamically coherent and
has a power that is a discretized Anosov flow, or is of a new potential class called a double translation |
Editorial: | MSP |
EN: | Geometry & Topology, 2023 27 (8): 3095–3181 |
Citación: | Barthelmé, T, Fenley, S, Frankel, S [y otros autores]. "Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II: Branching foliations". Geometry & Topology. [en línea] 2023, 27(8): 3095–3181. 90 h. DOI: 10.2140/gt.2023.27.3095 |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
gt-v27-n8-p03-s.pdf | 1,03 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons