english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/44820 Cómo citar
Título: Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II: Branching foliations
Autor: Barthelmé, Thomas
Fenley, Sergio
Frankel, Steven
Potrie Altieri, Rafael
Tipo: Artículo
Descriptores: PARTIAL HYPERBOLICITY, 3-MANIFOLDS, FOLIATIONS
Fecha de publicación: 2023
Resumen: We study 3–dimensional partially hyperbolic diffeomorphisms that are homotopic to the identity, focusing on the geometry and dynamics of Burago and Ivanov’s center stable and center unstable branching foliations. This extends our previous study of the true foliations that appear in the dynamically coherent case. We complete the classification of such diffeomorphisms in Seifert fibered manifolds. In hyperbolic manifolds, we show that any such diffeomorphism is either dynamically coherent and has a power that is a discretized Anosov flow, or is of a new potential class called a double translation
Editorial: MSP
EN: Geometry & Topology, 2023 27 (8): 3095–3181
Citación: Barthelmé, T, Fenley, S, Frankel, S [y otros autores]. "Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II: Branching foliations". Geometry & Topology. [en línea] 2023, 27(8): 3095–3181. 90 h. DOI: 10.2140/gt.2023.27.3095
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
gt-v27-n8-p03-s.pdf1,03 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons