english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/44753 Cómo citar
Título: Geodesic tracking and the shape of ergodic rotation sets
Autor: García-Sassi, Alejo
Guihéneuf, Pierre-Antoine
Lessa Echeverriarza, Pablo
Tipo: Preprint
Descriptores: MATHEMATICS - DYNAMICAL SYSTEMS
Fecha de publicación: 2024
Resumen: We prove a structure theorem for ergodic homological rotation sets of homeomorphisms isotopic to the identity on a closed orientable hyperbolic surface: this set is made of a finite number of pieces that are either one-dimensional or almost convex. The latter ones give birth to horseshoes; in the case of a zero-entropy homeomorphism we show that there exists a geodesic lamination containing the directions in which generic orbits with respect to ergodic invariant probabilities turn around the surface under iterations of the homeomorphism. The proof is based on the idea of geodesic tracking of orbits that are typical for some invariant measure by geodesics on the surface, that allows to get links between the dynamics of such points and the one of the geodesic flow on some invariant subset of the unit tangent bundle of the surface.
Descripción: Disponible también en: HAL science ouverte, 2024. hal-04491543
Editorial: arXiv
EN: Mathematics (Dynamical Systems), arXiv:2312.06249v2, mar. 2024, pp. 1-84
Citación: García-Sassi, A, Guihéneuf, P y Lessa Echeverriarza, P. "Geodesic tracking and the shape of ergodic rotation sets" [Preprint]. Publicado en: Mathematics (Dynamical Systems). 2024 arXiv:2312.06249v2, mar. 2024, pp. 1-84.
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
2312.06249v2.pdf990,79 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons