english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/44752 Cómo citar
Título: On the finiteness of the moments of the measure of level sets of random fields
Autor: Armentano, Diego
Azaïs, Jean Marc
Dalmao Artigas, Federico
León, José Rafael
Mordecki, Ernesto
Tipo: Preprint
Descriptores: MATHEMATICS - PROBABILITY
Fecha de publicación: 2020
Resumen: General conditions on smooth real valued random fields are given that ensure the finiteness of the moments of the measure of their level sets. As a by product a new generalized Kac-Rice formula (KRF) for the expectation of the measure of these level sets is obtained when the second moment can be uniformly bounded. The conditions involve (i) the differentiability of the trajectories up to a certain order k, (ii) the finiteness of the moments of the k-th partial derivatives of the field up to another order, (iii) the boundedness of the joint density of the field and some of its derivatives. Particular attention is given to the shot noise processes and fields. Other applications include stationary Gaussian processes, Chi-square processes and regularized diffusion processes.
Descripción: Versión permitida preprint
Publicado también en: Brazilian Journal of Probability and Statistics, 2023, 37(1): 219-245. DOI: 10.1214/23-BJPS568
Editorial: arXiv
EN: Mathematics (Probability), arXiv:1909.10243v2, ago 2020, pp 1-19
Citación: Armanetano, D, Azaïs, J, Dalmao Artigas, y otros. "On the finiteness of the moments of the measure of level sets of random fields"[Preprint]. Publicado en: Mathematics (Probability). 2020 arXiv:1909.10243v2, ago 2020, pp 1-19.
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
1909.10243v2.pdf281,43 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons