Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43551
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Sapiro, Guillermo | es |
dc.contributor.author | Bronstein, Alex | es |
dc.contributor.author | Lezama, José | es |
dc.contributor.author | Qiu, Qiang | es |
dc.date.accessioned | 2024-04-16T16:21:22Z | - |
dc.date.available | 2024-04-16T16:21:22Z | - |
dc.date.issued | 2018 | es |
dc.date.submitted | 20240416 | es |
dc.identifier.citation | Qiu, Q, Lezama, J, Bronstein, A, Sapiro, G. "ForestHash : semantic hashing with shallow random forests and tiny convolutional networks" Publicado en: Proceedings of the 15th European Conference Computer Vision, ECCV 2018, Munich, Germany, 8-14, set., 2018, , Part II, 442–459, https://doi.org/10.1007/978-3-030-01216-8_27 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/43551 | - |
dc.description | Trabajo presentado a 15th European Conference Computer Vision,ECCV 2018, Munich, Germany, 8-14, set., 2018 | es |
dc.description.abstract | In this paper, we introduce a random forest semantic hashing scheme that embeds tiny convolutional neural networks (CNN) into shallow random forests. A binary hash code for a data point is obtained by a set of decision trees, setting ‘1’ for the visited tree leaf, and ‘0’ for the rest. We propose to first randomly group arriving classes at each tree split node into two groups, obtaining a significantly simplified two-class classification problem that can be a handled with a light-weight CNN weak learner. Code uniqueness is achieved via the random class grouping, whilst code consistency is achieved using a low-rank loss in the CNN weak learners that encourages intra-class compactness for the two random class groups. Finally, we introduce an information-theoretic approach for aggregating codes of individual trees into a single hash code, producing a nearoptimal unique hash for each class. The proposed approach significantly outperforms state-of-the-art hashing methods for image retrieval tasks on large-scale public datasets, and is comparable to image classification methods while utilizing a more compact, efficient and scalable representation. This work proposes a principled and robust procedure to train and deploy in parallel an ensemble of light-weight CNNs, instead of simply going deeper | es |
dc.language | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Computing methodologies | es |
dc.subject | Machine learning | es |
dc.subject.other | Procesamiento de Señales | es |
dc.title | ForestHash : semantic hashing with shallow random forests and tiny convolutional networks | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Procesamiento de Señales | - |
udelar.investigation.group | Tratamiento de Imágenes | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
QLBS18.pdf | 1,8 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons