Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43544
Cómo citar
Título: | Reducing anomaly detection in images to detection in noise |
Autor: | Davy, Axel Ehret, Thibaud Morel, Jean-Michel Delbracio, Mauricio |
Tipo: | Ponencia |
Palabras clave: | Anomaly detection, Saliency, Self-similarity |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2018 |
Resumen: | Anomaly detectors address the difficult problem of detecting automatically exceptions in an arbitrary background image. Detection methods have been proposed by the thousands because each problem requires a different background model. By analyzing the existing approaches, we show that the problem can be reduced to detecting anomalies in residual images (extracted from the target image) in which noise and anomalies prevail. Hence, the general and impossible background modeling problem is replaced by simpler noise modeling, and allows the calculation of rigorous thresholds based on the a contrario detection theory. Our approach is therefore unsupervised and works on arbitrary images. |
Descripción: | Trabajo presentado al 25th IEEE International Conference on Image Processing (ICIP) |
Citación: | Davy, A, Ehret, T, Morel, J.M, Delbracio, M. "Reducing anomaly detection in images to detection in noise" Publicado en: Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Atenas, Grecia, 07-10 oct., 2018, pp. 1058-1062, doi: 10.1109/ICIP.2018.8451059. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
DEMD18.pdf | 2,86 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons