Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43537
Cómo citar
Título: | Visual music transcription of clarinet video recordings trained with audio-based labelled data |
Autor: | Zinemanas, Pablo Arias, Pablo Haro, Gloria Gomez, Emilia |
Tipo: | Ponencia |
Palabras clave: | Visualization, Kalman filters, Feature extraction, Instruments, Video recording |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2017 |
Resumen: | Automatic transcription is a well-known task in the music information retrieval (MIR) domain, and consists on the computation of a symbolic music representation (e.g. MIDI) from an audio recording. In this work, we address the automatic transcription of video recordings when the audio modality is missing or it does not have enough quality, and thus analyze the visual information. We focus on the clarinet which is played by opening/closing a set of holes and keys. We propose a method for automatic visual note estimation by detecting the fingertips of the player and measuring their displacement with respect to the holes and keys of the clarinet. To this aim, we track the clarinet and determine its position on every frame. The relative positions of the fingertips are used as features of a machine learning algorithm trained for note pitch classification. For that purpose, a dataset is built in a semiautomatic way by estimating pitch information from audio signals in an existing collection of 4.5 hours of video recordings from six different songs performed by nine different players. Our results confirm the difficulty of performing visual vs audio automatic transcription mainly due to motion blur and occlusions that cannot be solved with a single view |
Descripción: | Trabajo presentado en el International Conference on Computer Vision Workshops (ICCVW), Venicia Italia, 22-29 oct., 2017. |
Citación: | Gómez, E, Arias, P, Zinemanas, P, Haro, G. "Visual music transcription of clarinet video recordings trained with audio-based labelled data" Publicado en: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), Venicia, Italia, 22-29 oct, 2017, pp. 463-470, doi: 10.1109/ICCVW.2017.62. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Procesamiento de Audio |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ZAHG17.pdf | 1,52 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons