english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/43522 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPreciozzi, Javieres
dc.contributor.authorGonzález, Marioes
dc.contributor.authorAlmansa, Andréses
dc.contributor.authorMusé, Pabloes
dc.date.accessioned2024-04-16T16:21:11Z-
dc.date.available2024-04-16T16:21:11Z-
dc.date.issued2017es
dc.date.submitted20240416es
dc.identifier.citationPreciozzi, P, González, M, Almansa, A, Musé, P. "Joint denoising and decompression : a patch-based Bayesian approach" Publicado en: EEE International Conference on Image Processing (ICIP), Beijing, China, 2017, pp. 1252-1256, doi: 10.1109/ICIP.2017.8296482.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/43522-
dc.descriptionTrabajo presentado en el International Conference on Image Processing (ICIP), Beijing, China, 2017,es
dc.description.abstractJPEG and Wavelet compression artifacts leading to Gibbs effects and loss of texture are well known and many restoration solutions exist in the literature. So is denoising, which has occupied the image processing community for decades. However, when a noisy image is compressed, the noisy wavelet coefficients can be assigned to the " wrong " quantization interval, generating artifacts that can have dramatic consequences in products derived from satellite image pairs such as sub-pixel stereo vision and digital terrain elevation models. Despite the fact that the importance of such artifacts in very high resolution satellite imaging has recently been recognized, this restoration problem has been rarely addressed in the literature. In this work we present a thorough probabilistic analysis of the wavelet outliers phenomenon, and conclude that their probabilistic nature is characterized by a single parameter related to the ratio q/σ of the compression rate and the instrumental noise. This analysis provides the conditional probability for a Bayesian MAP estimator, whereas a patch-based local Gaussian prior model is learnt from the corrupted image iteratively, like in state of the art patch-based de-noising algorithms, albeit with the additional difficulty of dealing with non-Gaussian noise during the learning process. The resulting joint denoising and decompression algorithm is experimentally evaluated under realistic conditions. The results show its ability to simultaneously denoise, decompress and remove wavelet outliers better than the available alternatives, both from a quantitative and a qualitative point of view. As expected, the advantage of our method is more evident for large values of q/σes
dc.languageenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectSatelliteses
dc.subjectImage codinges
dc.subjectNoise reductiones
dc.subjectQuantization (signal)es
dc.subjectImage restorationes
dc.subjectWaveletes
dc.subject.otherProcesamiento de Señaleses
dc.titleJoint denoising and decompression : a patch-based bayesian approaches
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señales-
udelar.investigation.groupTratamiento de Imágenes-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
PGAM17.pdf835,11 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons