Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43521
Cómo citar
Título: | A sparsity-based variational approach for the restoration of SMOS images from L1A data |
Autor: | Preciozzi, Javier Almansa, Andrés Musé, Pablo Durand, Sylvain Khazaal, Ali Rougé, Bernard |
Tipo: | Preprint |
Palabras clave: | SMOS, MIRAS, RFI, Brightness temperature, Non-differentiable convex optimization, Total variation minimization |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2017 |
Resumen: | The Surface Moisture and Ocean Salinity (SMOS) mission senses ocean salinity and soil moisture by measuring Earth’s brightness temperature using interferometry in the L-band. These interferometry measurements known as visibilities constitute the SMOS L1A data product. Despite the L-band being reserved for Earth observation, the presence of illegal emitters causes radio frequency interference (RFI) that masks the energy radiated from the Earth and strongly corrupts the acquired images. Therefore, the recovery of brightness temperature from corrupted data by image restoration techniques is of major interest. In this paper, we propose a variational model to recover superresolved, denoised brightness temperature maps by decomposing the images into two components: an image T that models the Earth’s brightness temperature and an image O modeling the RFIs. |
Citación: | Preciozzi, J, Almansa, A, Musé, P, Durand, S, Khazaal, A, Rougé, B. "A sparsity-based variational approach for the restoration of SMOS images from L1A data" [Preprint] Publicado en: IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 5, pp. 2811-2826, May 2017, doi: 10.1109/TGRS.2017.2654864 |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
PAMDKR17.pdf | 9,18 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons