Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43515
Cómo citar
Título: | Vanishing point detection in urban scenes using point alignments |
Autor: | Lezama, José Randall, Gregory Grompone von Gioi, Rafael |
Tipo: | Artículo |
Palabras clave: | Vanishing points, Manhattan world, PClines, A contrario, Point alignments |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2017 |
Resumen: | We present a method for the automatic detection of vanishing points in urban scenes based on nding point alignments in a dual space, where converging lines in the image are mapped to aligned points. To compute this mapping the recently introduced PClines transformation is used. A robust point alignment detector is run to detect clusters of aligned points in the dual space. Finally, a post-processing step discriminates relevant from spurious vanishing point detections with two options: using a simple hypothesis of three orthogonal vanishing points (Manhattan-world) or the hypothesis that one vertical and multiple horizontal vanishing points exist. Qualitative and quantitative experimental results are shown. On two public standard datasets, the method achieves state-of-the-art performances. Finally, an optional procedure for accelerating the method is presented. |
Editorial: | IPOL |
EN: | Image Processing On Line, 7 (2017) |
Citación: | Lezama, J, Randall, G, Grompone von Gioi, R. "Vanishing point detection in urban scenes using point alignments". Image Processing On Line, 7 (2017), pp. 131–164. https://doi.org/10.5201/ipol.2017.148 |
ISSN: | 2105–1232 |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
LRG17.pdf | 23,04 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons