english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/43514 How to cite
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSapiro, Guillermoes
dc.contributor.authorQiu, Qianges
dc.contributor.authorLezama, Josées
dc.date.accessioned2024-04-16T16:21:08Z-
dc.date.available2024-04-16T16:21:08Z-
dc.date.issued2017es
dc.date.submitted20240416es
dc.identifier.citationLezama, J, Qiu. Q. Sapiro, G. "Not afraid of the dark: NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding" Publicado en: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 jul. 2017, pp. 6807-6816, doi: 10.1109/CVPR.2017.720.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/43514-
dc.descriptionVersión de acceso abierto provista por Computer Vision Foundationes
dc.description.abstractSurveillance cameras today often capture NIR (near infrared) images in low-light environments. However, most face datasets accessible for training and verification are only collected in the VIS (visible light) spectrum. It remains a challenging problem to match NIR to VIS face images due to the different light spectrum. Recently, breakthroughs have been made for VIS face recognition by applying deep learning on a huge amount of labeled VIS face samples. The same deep learning approach cannot be simply applied to NIR face recognition for two main reasons: First, much limited NIR face images are available for training compared to the VIS spectrum. Second, face galleries to be matched are mostly available only in the VIS spectrum. In this paper, we propose an approach to extend the deep learning breakthrough for VIS face recognition to the NIR spectrum, without retraining the underlying deep models that see only VIS faces. Our approach consists of two core components, cross-spectral hallucination and low-rank embedding, to optimize respectively input and output of a VIS deep model for cross-spectral face recognition. Cross-spectral hallucination produces VIS faces from NIR images through a deep learning approach. Low-rank embedding restores a low-rank structure for faces deep features across both NIR and VIS spectrum. We observe that it is often equally effective to perform hallucination to input NIR images or low-rank embedding to output deep features for a VIS deep model for cross-spectral recognition. When hallucination and low-rank embedding are deployed together, we observe significant further improvement, we obtain state-of-the-art accuracy on the CASIA NIR-VIS v2.0 benchmark, without the need at all to re-train the recognition system.es
dc.languageenes
dc.relation.ispartofConference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 jul. 2017es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectFace recognitiones
dc.subjectNeural networkses
dc.subjectFeature extractiones
dc.subjectMachine learninges
dc.subjectImage recognitiones
dc.subject.otherProcesamiento de Señaleses
dc.titleNot afraid of the dark : NIR-VIS face recognition via cross-spectral hallucination and low-rank embeddinges
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señales-
udelar.investigation.groupTratamiento de Imágenes-
Appears in Collections:Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
LQS17.pdf2,36 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons