english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/43491 Cómo citar
Título: ARM-cortex M3-based two-wheel robot for assessing grid cell model of medial entorhinal cortex: Progress towards building robots with biologically inspired navigation-cognitive maps
Autor: Cuneo, Javier
Barboni, Leonardo
Blanco, Nicolás
Castillo, Mariana del
Quagliotti, Joaquín
Tipo: Artículo
Descriptores: Electrónica
Fecha de publicación: 2017
Resumen: This article presents the implementation and use of a two-wheel autonomous robot and its effectiveness as a tool for studying the recently discovered use of grid cells as part of mammalian’s brains space-mapping circuitry (specifically the medial entorhinal cortex). A proposed discrete-time algorithm that emulates the medial entorhinal cortex is programed into the robot. The robot freely explores a limited laboratory area in the manner of a rat or mouse and reports information to a PC, thus enabling research without the use of live individuals. Position coordinate neural maps are achieved as mathematically predicted although for a reduced number of implemented neurons (i.e., 200 neurons). However, this type of computational embedded system (robot’s microcontroller) is found to be insufficient for simulating huge numbers of neurons in real time (as in the medial entorhinal cortex). It is considered that the results of this work provide an insight into achieving an enhanced embedded systems design for emulating and understanding mathematical neural network models to be used as biologically inspired navigation system for robots
Editorial: Hindawi
EN: Journal of Robotics, v. 2017, Article ID 8069654
Citación: Cuneo, J, Barboni, L, Blanco, N, Castillo, M del, Quagliotti, J. "ARM-cortex M3-based two-wheel robot for assessing grid cell model of medial entorhinal cortex: progress towards building robots with biologically inspired navigation-cognitive maps" Journal of Robotics, v. 2017, Article ID 8069654, https://doi.org/10.1155/2017/8069654
ISSN: 1687-9600
Departamento académico: Electrónica
Grupo de investigación: Microelectrónica
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
CBBDQ17.pdf5,25 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons