english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/43490 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAguerrebere, Ceciliaes
dc.contributor.authorAlmansa, Andréses
dc.contributor.authorDelon, Juliees
dc.contributor.authorGousseau, Yannes
dc.contributor.authorMusé, Pabloes
dc.date.accessioned2024-04-16T16:20:58Z-
dc.date.available2024-04-16T16:20:58Z-
dc.date.issued2017es
dc.date.submitted20240416es
dc.identifier.citationAguerrebere, C, Almansa, A, Delon, J, Gousseau, Y, Musé, P. "A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, With an Application to HDR Imaging" [Preprint] Publicado en: IEEE Transactions on Computational Imaging, v. 3, no. 4, pp. 633-646, 2017, doi: 10.1109/TCI.2017.2704439es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/43490-
dc.descriptionPublicado en IEEE Transactions on Computational Imaging, v.3, no. 4, 2017es
dc.description.abstractRecently, impressive denoising results have been achieved by Bayesian approaches which assume Gaussian models for the image patches. This improvement in performance can be attributed to the use of per-patch models. Unfortunately such an approach is particularly unstable for most inverse problems beyond denoising. In this work, we propose the use of a hyperprior to model image patches, in order to stabilize the estimation procedure. There are two main advantages to the proposed restoration scheme: Firstly it is adapted to diagonal degradation matrices, and in particular to missing data problems (e.g. inpainting of missing pixels or zooming). Secondly it can deal with signal dependent noise models, particularly suited to digital cameras. As such, the scheme is especially adapted to computational photography. In order to illustrate this point, we provide an application to high dynamic range imaging from a single image taken with a modified sensor, which shows the effectiveness of the proposed schemees
dc.languageenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectNon-local patch-based restorationes
dc.subjectBayesian restorationes
dc.subjectMaximum a posteriories
dc.subjectGaussian Mixture Modelses
dc.subjectHyper-priores
dc.subjectConjugate distributionses
dc.subjectHigh dynamic range imaginges
dc.subjectSingle shot HDRes
dc.subjectHierarchical modelses
dc.subject.otherProcesamiento de Señaleses
dc.titleA bayesian hyperprior approach for joint image denoising and interpolation, with an application to HDR imaginges
dc.typePreprintes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señales-
udelar.investigation.groupTratamiento de Imágenes-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
AADGM17.pdf9,71 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons