Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/43490
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Aguerrebere, Cecilia | es |
dc.contributor.author | Almansa, Andrés | es |
dc.contributor.author | Delon, Julie | es |
dc.contributor.author | Gousseau, Yann | es |
dc.contributor.author | Musé, Pablo | es |
dc.date.accessioned | 2024-04-16T16:20:58Z | - |
dc.date.available | 2024-04-16T16:20:58Z | - |
dc.date.issued | 2017 | es |
dc.date.submitted | 20240416 | es |
dc.identifier.citation | Aguerrebere, C, Almansa, A, Delon, J, Gousseau, Y, Musé, P. "A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, With an Application to HDR Imaging" [Preprint] Publicado en: IEEE Transactions on Computational Imaging, v. 3, no. 4, pp. 633-646, 2017, doi: 10.1109/TCI.2017.2704439 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/43490 | - |
dc.description | Publicado en IEEE Transactions on Computational Imaging, v.3, no. 4, 2017 | es |
dc.description.abstract | Recently, impressive denoising results have been achieved by Bayesian approaches which assume Gaussian models for the image patches. This improvement in performance can be attributed to the use of per-patch models. Unfortunately such an approach is particularly unstable for most inverse problems beyond denoising. In this work, we propose the use of a hyperprior to model image patches, in order to stabilize the estimation procedure. There are two main advantages to the proposed restoration scheme: Firstly it is adapted to diagonal degradation matrices, and in particular to missing data problems (e.g. inpainting of missing pixels or zooming). Secondly it can deal with signal dependent noise models, particularly suited to digital cameras. As such, the scheme is especially adapted to computational photography. In order to illustrate this point, we provide an application to high dynamic range imaging from a single image taken with a modified sensor, which shows the effectiveness of the proposed scheme | es |
dc.language | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Non-local patch-based restoration | es |
dc.subject | Bayesian restoration | es |
dc.subject | Maximum a posteriori | es |
dc.subject | Gaussian Mixture Models | es |
dc.subject | Hyper-prior | es |
dc.subject | Conjugate distributions | es |
dc.subject | High dynamic range imaging | es |
dc.subject | Single shot HDR | es |
dc.subject | Hierarchical models | es |
dc.subject.other | Procesamiento de Señales | es |
dc.title | A bayesian hyperprior approach for joint image denoising and interpolation, with an application to HDR imaging | es |
dc.type | Preprint | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Procesamiento de Señales | - |
udelar.investigation.group | Tratamiento de Imágenes | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
AADGM17.pdf | 9,71 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons