english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/42719 How to cite
Title: Unsupervised smooth contour detection
Authors: Grompone von Gioi, Rafael
Randall, Gregory
Type: Artículo
Keywords: Contour detection, Unsupervised, Sub-pixel accuracy, a contrario, NFA, Mann-Whitney U test, Multiple hypothesis testing
Descriptors: Procesamiento de Señales
Issue Date: 2016
Abstract: An unsupervised method for detecting smooth contours in digital images is proposed. Following the a contrario approach, the starting point is defining the conditions where contours should not be detected: soft gradient regions contaminated by noise. To achieve this, low frequencies are removed from the input image. Then, contours are validated as the frontiers separating two adjacent regions, one with significantly larger values than the other. Significance is evaluated using the Mann-Whitney U test to determine whether the samples were drawn from the same distribution or not. This test makes no assumption on the distributions. The resulting algorithm is similar to the classic Marr-Hildreth edge detector, with the addition of the statistical validation step. Combined with heuristics based on the Canny and Devernay methods, an efficient algorithm is derived producing sub-pixel contours.
Publisher: IPOL
IN: Image Processing On Line, 6, 2016, pp. 233–267
Citation: Grompone von Gioi, R, Randall, G. "Unsupervised smooth contour detection". Image Processing On Line, 6, 2016, pp. 233–267. https://doi.org/10.5201/ipol.2016.175
ISSN: 2105-1232
License: Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
Appears in Collections:Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
GR16.pdf9,51 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons