english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/42648 Cómo citar
Título: Automatic eyes and nose detection using curvature analysis
Autor: Di Martino, Matías
Fernández, Alicia
Ferrari, José
Tipo: Ponencia
Palabras clave: Landmark detection, Differential 3d reconstruction, Nose tip detection, Eyes detection
Descriptores: Procesamiento de Señales
Fecha de publicación: 2015
Resumen: In the present work we propose a method for detecting the nose and eyes position when we observe a scene that contains a face. The main goal of the proposed technique is that it capable of bypassing the 3D explicit mapping of the face and instead take advantage of the information available in the Depth gradient map of the face. To this end we will introduce a simple false positive rejection approach restricting the distance between the eyes, and between the eyes and the nose. The main idea is to use nose candidates to estimate those regions where is expected to find the eyes, and vice versa. Experiments with Texas database are presented and the proposed approach is testes when data presents different power of noise and when faces are in different positions with respect to the camera.
Editorial: Springer International Publishing
EN: 20th Iberoamerican Congress, CIARP 2015, Montevideo, Uruguay, 9-12 nov, 2015
Citación: Di Martino, J.M., Fernández, A., Ferrari, J. "Automatic eyes and nose detection using curvature analysis". Pardo, A., Kittler, J. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2015. Lecture Notes in Computer Science, vol 9423. Springer, Cham. https://doi.org/10.1007/978-3-319-25751-8_33
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imágenes
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
DFF15b.pdf1,11 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons