Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/42648
Cómo citar
Título: | Automatic eyes and nose detection using curvature analysis |
Autor: | Di Martino, Matías Fernández, Alicia Ferrari, José |
Tipo: | Ponencia |
Palabras clave: | Landmark detection, Differential 3d reconstruction, Nose tip detection, Eyes detection |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2015 |
Resumen: | In the present work we propose a method for detecting the nose and eyes position when we observe a scene that contains a face. The main goal of the proposed technique is that it capable of bypassing the 3D explicit mapping of the face and instead take advantage of the information available in the Depth gradient map of the face. To this end we will introduce a simple false positive rejection approach restricting the distance between the eyes, and between the eyes and the nose. The main idea is to use nose candidates to estimate those regions where is expected to find the eyes, and vice versa. Experiments with Texas database are presented and the proposed approach is testes when data presents different power of noise and when faces are in different positions with respect to the camera. |
Editorial: | Springer International Publishing |
EN: | 20th Iberoamerican Congress, CIARP 2015, Montevideo, Uruguay, 9-12 nov, 2015 |
Citación: | Di Martino, J.M., Fernández, A., Ferrari, J. "Automatic eyes and nose detection using curvature analysis". Pardo, A., Kittler, J. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2015. Lecture Notes in Computer Science, vol 9423. Springer, Cham. https://doi.org/10.1007/978-3-319-25751-8_33 |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
DFF15b.pdf | 1,11 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons