Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/42459
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Flieller Alfonso, Guillermo Francisco | - |
dc.contributor.author | Solari, Alfredo | - |
dc.contributor.author | Bruno Cotelo, Rafael | - |
dc.contributor.author | Chaer, Ruben | - |
dc.coverage.spatial | Uruguay | es |
dc.date.accessioned | 2024-02-15T14:45:13Z | - |
dc.date.available | 2024-02-15T14:45:13Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Flieller Alfonso, G., Solari, A., Bruno Cotelo, R. y otros. A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system [en línea]. EN: 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16-17 nov. 2023, pp. 1-5. DOI: 10.1109/ICECET58911.2023.10389491. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/42459 | - |
dc.description.abstract | In systems with a high penetration of wind power generation, the precision of the forecasts is a critical input for the electricity dispatch planning. In this paper, we present the methodology that has been used to implement a complete update of the wind power forecast model in Uruguay. The new model increases the precision of the forecasts both in low and high power scenarios. It allows to perform a more efficient short-term electricity dispatch, improving the resource valuation, the inter-systems energy exchanges and the prevision of the wholesale electricity market spot price. According to the simulations performed, the new model increase the precision of wind power forecasts between 7% and 32%. The model is on its production phase and their results can be accessed through pronos.adme.com.uy/svg and latorrex.adme.com.uy/vates. | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.relation.ispartof | 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16-17 nov. 2023, pp. 1-5. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Training | es |
dc.subject | Adaptation models | es |
dc.subject | Uncertainty | es |
dc.subject | Wind speed | es |
dc.subject | Wind power generation | es |
dc.subject | Predictive models | es |
dc.subject | Wind farms | es |
dc.subject | Renewable energy systems | es |
dc.subject | Forecasting | es |
dc.subject | Wind energy | es |
dc.subject | Neural networks | es |
dc.subject | Wind turbine power curve | es |
dc.title | A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Flieller Alfonso Guillermo Francisco, ADME : Administración del Mercado Eléctrico, Uruguay. | - |
dc.contributor.filiacion | Solari Alfredo, ADME : Administración del Mercado Eléctrico, Uruguay. | - |
dc.contributor.filiacion | Bruno Cotelo Rafael, ADME : Administración del Mercado Eléctrico, Uruguay. | - |
dc.contributor.filiacion | Chaer Ruben, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
FSBC23.pdf | Versión enviada | 1,63 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons