Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/42222
Cómo citar
Título: | Quinary forms and paramodular forms |
Autor: | Dummigan, Neil Pacetti, Ariel Rama, Gustavo Tornaría, Gonzalo |
Tipo: | Preprint |
Palabras clave: | Quinary lattices, Paramodular forms, Harder’s conjecture |
Fecha de publicación: | 2021 |
Resumen: | We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev. |
Editorial: | arXiv |
EN: | Mathematics (Number Theory), arXiv:2112.03797, dic 2021 |
Citación: | Dummigan, N, Pacetti, A, Rama, G y otro. "Quinary forms and paramodular forms". Mathematics (Number Theory). [en línea] 2021 arXiv:2112.03797, dic 2021. 52 h. DOI: 10.48550/arXiv.2112.03797. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
1048550arXiv211203797.pdf | 649,37 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons