english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/42222 How to cite
Title: Quinary forms and paramodular forms
Authors: Dummigan, Neil
Pacetti, Ariel
Rama, Gustavo
Tornaría, Gonzalo
Type: Preprint
Keywords: Quinary lattices, Paramodular forms, Harder’s conjecture
Issue Date: 2021
Abstract: We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.
Publisher: arXiv
IN: Mathematics (Number Theory), arXiv:2112.03797, dic 2021
DOI: 10.48550/arXiv.2112.03797
Citation: Dummigan, N, Pacetti, A, Rama, G y otro. "Quinary forms and paramodular forms". Mathematics (Number Theory). [en línea] 2021 arXiv:2112.03797, dic 2021. 52 h. DOI: 10.48550/arXiv.2112.03797.
License: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Appears in Collections:Publicaciones académicas y científicas - Facultad de Ciencias

Files in This Item:
File Description SizeFormat  
1048550arXiv211203797.pdf649,37 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons