english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/42196 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAbadie, Fernando-
dc.contributor.authorGardella, Eusebio-
dc.contributor.authorGeffen, Shirly-
dc.date.accessioned2024-01-12T15:31:45Z-
dc.date.available2024-01-12T15:31:45Z-
dc.date.issued2021-
dc.identifier.citationAbadie, F, Gardella, E y Geffen, S. "Decomposable partial actions" [Preprint] Publicado en: Mathematics (Operator Algebras). 2021, arXiv:2003.14051. pp 1-26. DOI: 10.1016/j.jfa.2021.109112.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/42196-
dc.descriptionPublicado también en Journal of Functional Analysis, 2021, 281(7) DOI: 10.1016/j.jfa.2021.109112es
dc.description.abstractWe define the decomposition property for partial actions of discrete groups on C∗-algebras. Decomposable partial systems appear naturally in practice, and many commonly occurring partial actions can be decomposed into partial actions with the decomposition property. For instance, any partial action of a finite group is an iterated extension of decomposable systems. Partial actions with the decomposition property are always globalizable and amenable, regardless of the acting group, and their globalization can be explicitly described in terms of certain global sub-systems. A direct computation of their crossed products is also carried out. We show that partial actions with the decomposition property behave in many ways like global actions of finite groups (even when the acting group is infinite), which makes their study particularly accessible. For example, there exists a canonical faithful conditional expectation onto the fixed point algebra, which is moreover a corner in the crossed product in a natural way. (Both of these facts are in general false for partial actions of finite groups.) As an application, we show that freeness of a topological partial action with the decomposition property is equivalent to its fixed point algebra being Morita equivalent to its crossed product. We also show by example that this fails for general partial actions of finite groups.es
dc.format.extent26 h.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherarXives
dc.relation.ispartofMathematics (Operator Algebras). arXiv:2003.14051. pp 1-26es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectC∗-algebrases
dc.subjectdecomposition propertyes
dc.titleDecomposable partial actionses
dc.typePreprintes
dc.contributor.filiacionAbadie Fernando, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.-
dc.contributor.filiacionGardella Eusebio-
dc.contributor.filiacionGeffen Shirly-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)es
dc.identifier.doi10.1016/j.jfa.2021.109112-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
101016jjfa2021109112.pdf360,74 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons