Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/42194
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Gutiérrez Ibarra, Caracé | - |
dc.contributor.author | Gancio Vázquez, Juan | - |
dc.contributor.author | Cabeza, Cecilia | - |
dc.contributor.author | Rubido, Nicolás | - |
dc.date.accessioned | 2024-01-12T15:30:38Z | - |
dc.date.available | 2024-01-12T15:30:38Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Gutiérrez Ibarra, C, Gancio Vázquez, J, Cabeza, C [y otro autor]. "Finding the resistance distance and eigenvector centrality from the network’s eigenvalues". [preprint] Publicado en: Physics (Physics and Society). 2020, arXiv:2005.00452, May 2020, pp 1-7. DOI: 10.48550/arXiv.2005.00452. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/42194 | - |
dc.description | Publicado también en: Physica A: Statistical Mechanics and its Applications, 2021, 569: 125751. DOI: 10.1016/j.physa.2021.125751. | es |
dc.description.abstract | There are different measures to classify a network's data set that, depending on the problem, have different success. For example, the resistance distance and eigenvector centrality measures have been successful in revealing ecological pathways and differentiating between biomedical images of patients with Alzheimer's disease, respectively. The resistance distance measures the effective distance between any two nodes of a network taking into account all possible shortest paths between them and the eigenvector centrality measures the relative importance of each node in the network. However, both measures require knowing the network's eigenvalues and eigenvectors -- eigenvectors being the more computationally demanding task. Here, we show that we can closely approximate these two measures using only the eigenvalue spectra, where we illustrate this by experimenting on elemental resistor circuits and paradigmatic network models -- random and small-world networks. Our results are supported by analytical derivations, showing that the eigenvector centrality can be perfectly matched in all cases whilst the resistance distance can be closely approximated. Our underlying approach is based on the work by Denton, Parke, Tao, and Zhang [arXiv:1908.03795 (2019)], which is unrestricted to these topological measures and can be applied to most problems requiring the calculation of eigenvectors. | es |
dc.description.sponsorship | ANII: POS_NAC_2018_1_151237 | es |
dc.description.sponsorship | ANII: POS_NAC_2018_1_151185 | es |
dc.description.sponsorship | CSIC: 2018 - FID13 - grupo ID 722 | es |
dc.format.extent | 7 h. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | arXiv | es |
dc.relation.ispartof | Physics (Physics and Society), arXiv:2005.00452, May 2020, pp 1-7. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Resistor networks | es |
dc.subject | Resistor distance | es |
dc.subject | Eigenvector centrality | es |
dc.subject | Eigenvalue spectra | es |
dc.title | Finding the resistance distance and eigenvector centrality from the network’s eigenvalues | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Gutiérrez Ibarra Caracé, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. | - |
dc.contributor.filiacion | Gancio Vázquez Juan, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. | - |
dc.contributor.filiacion | Cabeza Cecilia, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. | - |
dc.contributor.filiacion | Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.48550/arXiv.2005.00452 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
101016jphysa2021125751.pdf | 2,39 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons