english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/42194 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGutiérrez Ibarra, Caracé-
dc.contributor.authorGancio Vázquez, Juan-
dc.contributor.authorCabeza, Cecilia-
dc.contributor.authorRubido, Nicolás-
dc.date.accessioned2024-01-12T15:30:38Z-
dc.date.available2024-01-12T15:30:38Z-
dc.date.issued2020-
dc.identifier.citationGutiérrez Ibarra, C, Gancio Vázquez, J, Cabeza, C [y otro autor]. "Finding the resistance distance and eigenvector centrality from the network’s eigenvalues". [preprint] Publicado en: Physics (Physics and Society). 2020, arXiv:2005.00452, May 2020, pp 1-7. DOI: 10.48550/arXiv.2005.00452.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/42194-
dc.descriptionPublicado también en: Physica A: Statistical Mechanics and its Applications, 2021, 569: 125751. DOI: 10.1016/j.physa.2021.125751.es
dc.description.abstractThere are different measures to classify a network's data set that, depending on the problem, have different success. For example, the resistance distance and eigenvector centrality measures have been successful in revealing ecological pathways and differentiating between biomedical images of patients with Alzheimer's disease, respectively. The resistance distance measures the effective distance between any two nodes of a network taking into account all possible shortest paths between them and the eigenvector centrality measures the relative importance of each node in the network. However, both measures require knowing the network's eigenvalues and eigenvectors -- eigenvectors being the more computationally demanding task. Here, we show that we can closely approximate these two measures using only the eigenvalue spectra, where we illustrate this by experimenting on elemental resistor circuits and paradigmatic network models -- random and small-world networks. Our results are supported by analytical derivations, showing that the eigenvector centrality can be perfectly matched in all cases whilst the resistance distance can be closely approximated. Our underlying approach is based on the work by Denton, Parke, Tao, and Zhang [arXiv:1908.03795 (2019)], which is unrestricted to these topological measures and can be applied to most problems requiring the calculation of eigenvectors.es
dc.description.sponsorshipANII: POS_NAC_2018_1_151237es
dc.description.sponsorshipANII: POS_NAC_2018_1_151185es
dc.description.sponsorshipCSIC: 2018 - FID13 - grupo ID 722es
dc.format.extent7 h.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherarXives
dc.relation.ispartofPhysics (Physics and Society), arXiv:2005.00452, May 2020, pp 1-7.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectResistor networkses
dc.subjectResistor distancees
dc.subjectEigenvector centralityes
dc.subjectEigenvalue spectraes
dc.titleFinding the resistance distance and eigenvector centrality from the network’s eigenvalueses
dc.typePreprintes
dc.contributor.filiacionGutiérrez Ibarra Caracé, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.contributor.filiacionGancio Vázquez Juan, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.contributor.filiacionCabeza Cecilia, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.contributor.filiacionRubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.48550/arXiv.2005.00452-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
101016jphysa2021125751.pdf2,39 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons