Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41823
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Preciozzi, Javier | es |
dc.contributor.author | Musé, Pablo | es |
dc.contributor.author | Almansa, Andrés | es |
dc.contributor.author | Durand, Sylvain | es |
dc.contributor.author | Khazaal, Ali | es |
dc.contributor.author | Rougé, Bernard | es |
dc.date.accessioned | 2023-12-11T19:57:56Z | - |
dc.date.available | 2023-12-11T19:57:56Z | - |
dc.date.issued | 2014 | es |
dc.date.submitted | 20231211 | es |
dc.identifier.citation | Freciozzi, J, Musé, P, Almansa, A, Durand, S, Khazaal, A, Rougé, B, "SMOS images restoration from L1A data : a sparsity-based variational approach" Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec, Canada, 13-18 jul, 2014, pp. 2487-2490, doi: 10.1109/IGARSS.2014.6946977. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/41823 | - |
dc.description | Trabajo aceptado en Geoscience and Remote Sensing Symposium, Quebec, Canada, 13-18 jul., 2014 | es |
dc.description.abstract | Data degradation by radio frequency interferences (RFI) is one of the major challenges that SMOS and other interferometers radiometers missions have to face. Although a great number of the illegal emitters were turned off since the mission was launched, not all of the sources were completely removed. Moreover, the data obtained previously is already corrupted by these RFI. Thus, the recovery of brightness temperature from corrupted data by image restoration techniques is of major interest. In this work we propose a variational approach to recover a super-resolved, denoised brightness temperature map based on two spatial components: an image uthat models the brightness temperature and an image o modeling the RFI. The approach is totally new to our knowledge, in the sense that it is directly and exclusively based on the visibilities (L1a data), and thus can also be considered as an alternative to other brightness temperature recovery methods. | es |
dc.language | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | SMOS | es |
dc.subject | MIRAS | es |
dc.subject | RFI | es |
dc.subject | Non-differentiable | es |
dc.subject | Convex optimization | es |
dc.subject | Total variation minimization | es |
dc.subject.other | Procesamiento de Señales | es |
dc.title | SMOS images restoration from L1A data : a sparsity-based variational approach | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Procesamiento de Señales | - |
udelar.investigation.group | Tratamiento de Imágenes | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
SMOS.pdf | 1,4 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons