Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41151
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Sapiro, Guillermo | es |
dc.contributor.author | Musé, Pablo | es |
dc.contributor.author | Fiori, Marcelo | es |
dc.date.accessioned | 2023-11-14T17:04:32Z | - |
dc.date.available | 2023-11-14T17:04:32Z | - |
dc.date.issued | 2012 | es |
dc.date.submitted | 20231114 | es |
dc.identifier.citation | Fiori, M, Musé, P, Sapiro, G. "Topology constraints in graphical models" Advances in Neural Information Processing Systems 25 (NIPS 2012) | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/41151 | - |
dc.description.abstract | Graphical models are a very useful tool to describe and understand natural phenomena, from gene expression to climate change and social interactions. The topological structure of these graphs/networks is a fundamental part of the analysis, and in many cases the main goal of the study. However, little work has been done on incorporating prior topological knowledge onto the estimation of the underlying graphical models from sample data. In this work we propose extensions to the basic joint regression model for network estimation, which explicitly incorporate graph-topological constraints into the corresponding optimization approach. The first proposed extension includes an eigenvector centrality constraint, thereby promoting this important prior topological property. The second developed extension promotes the formation of certain motifs, triangle-shaped ones in particular, which are known to exist for example in genetic regulatory networks. The presentation of the underlying formulations, which serve as examples of the introduction of topological constraints in network estimation, is complemented with examples in diverse datasets demonstrating the importance of incorporating such critical prior knowledge. | es |
dc.language | en | es |
dc.publisher | NeurIPS | es |
dc.relation.ispartof | Advances in Neural Information Processing Systems 25 (NIPS 2012) | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.title | Topology constraints in graphical models | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
NIPS2012_0363.pdf | 1,21 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons