Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41147
Cómo citar
Título: | Non-parametric sub-pixel local point spread function estimation |
Autor: | Almansa, Andrés Musé, Pablo Delbracio, Mauricio |
Tipo: | Artículo |
Descriptores: | Procesamiento de Señales |
Fecha de publicación: | 2012 |
Resumen: | This work presents an algorithm for the local subpixel estimation of the Point Spread Function (PSF) that models the intrinsic camera blur. For this purpose, the Bernoulli(0:5) random noise calibration pattern introduced in a previous article [1] is used. This leads to a well-posed near-optimal accurate estimation. First the pattern position and its illumination conditions are accurately estimated. This allows for accurate geometric registration and radiometric correction. Once these procedures are performed, the local PSF can be directly computed by inverting a linear system. This system is well-posed and consequently its inversion does not require any regularization or prior model. The PSF estimates reach stringent accuracy levels with a relative error in the order of 2 to 5%. |
Editorial: | IPOL |
EN: | Image Processing On Line, 2 (2012) |
Citación: | Delbracio, M, Musé, P, Almansa, A. "Non-parametric sub-pixel local point spread function estimation", Image Processing On Line, 2 (2012), pp. 8–21. https://doi.org/10.5201/ipol.2012.admm-nppsf |
ISSN: | 2105-1232 |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
DMA12.pdf | 1,58 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons