english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/41144 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBazerque, Juan Andréses
dc.contributor.authorMateos, Gonzaloes
dc.contributor.authorGiannakis, Georgios Bes
dc.date.accessioned2023-11-14T17:04:30Z-
dc.date.available2023-11-14T17:04:30Z-
dc.date.issued2011es
dc.date.submitted20231114es
dc.identifier.citationBazerque, J, Mateos, G, Giannakis, G.. “Group-lasso on splines for spectrum cartography” [Preprint] Publicado en IEEE Transactions on Signal Processing, 2011 v. 59, no. 10. DOI: 10.1109/TSP.2011.2160858es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/41144-
dc.description.abstractThe unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the field's noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finite-dimensional (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that “better” explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Computer simulations and tests on real data corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronouncedes
dc.languageenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectSparsityes
dc.subjectSplineses
dc.subject(group-)Lassoes
dc.subjectField estimationes
dc.subjectCognitive radio sensinges
dc.subjectOptimizationes
dc.subject.otherSistemas y Controles
dc.titleGroup-lasso on splines for spectrum cartographyes
dc.typePreprintes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
BMG11.pdf369,63 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons