english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/39853 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMarín, Gonzalo-
dc.contributor.authorCasas, Pedro-
dc.contributor.authorCapdehourat, Germán-
dc.date.accessioned2023-09-08T18:03:20Z-
dc.date.available2023-09-08T18:03:20Z-
dc.date.issued2020-
dc.identifier.citationMarín, G., Casas, P. y Capdehourat, G. "DeepMAL - Deep learning models for malware traffic detection and classification". Computing Research Repository (CoRR) [Preprint]. Publicado en: Computing Research Repository (CoRR), mar. 2020, pp. 1-9, DOI: 10.48550/arXiv.2003.04079.es
dc.identifier.urihttps://arxiv.org/abs/2003.04079-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/39853-
dc.description.abstractRobust network security systems are essential to prevent and mitigate the harming effects of the ever-growing occurrence of network attacks. In recent years, machine learning-based systems have gain popularity for network security applications, usually considering the application of shallow models, which rely on the careful engineering of expert, handcrafted input features. The main limitation of this approach is that handcrafted features can fail to perform well under different scenarios and types of attacks. Deep Learning (DL) models can solve this limitation using their ability to learn feature representations from raw, non-processed data. In this paper we explore the power of DL models on the specific problem of detection and classification of malware network traffic. As a major advantage with respect to the state of the art, we consider raw measurements coming directly from the stream of monitored bytes as input to the proposed models, and evaluate different raw-traffic feature representations, including packet and flow-level ones. We introduce DeepMAL, a DL model which is able to capture the underlying statistics of malicious traffic, without any sort of expert handcrafted features. Using publicly available traffic traces containing different families of malware traffic, we show that DeepMAL can detect and classify malware flows with high accuracy, outperforming traditional, shallow-like models.es
dc.format.extent9 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherarXives
dc.relation.ispartofComputing Research Repository (CoRR), arXiv:2003.04079, mar. 2020, pp. 1-9.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectDeep Learninges
dc.subjectNetwork Securityes
dc.subjectRaw Network Measurementses
dc.subjectMalwarees
dc.titleDeepMAL - Deep learning models for malware traffic detection and classificationes
dc.typePreprintes
dc.contributor.filiacionMarín Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCasas Pedro, Austrian Institute of Technology, Vienna, Austria-
dc.contributor.filiacionCapdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentTelecomunicaciones-
udelar.investigation.groupAnálisis de Redes, Tráfico y Estadísticas de Servicios-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MCC20.pdfPreprint519,56 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons