english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/39141 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPazos Obregón, Flavio-
dc.contributor.authorSilvera, Diego-
dc.contributor.authorCantera, Rafael-
dc.contributor.authorYankilevich, Patricio-
dc.contributor.authorGuerberoff, Gustavo-
dc.contributor.authorSoto, Pablo-
dc.date.accessioned2023-08-10T12:24:40Z-
dc.date.available2023-08-10T12:24:40Z-
dc.date.issued2022-
dc.identifier.citationPazos Obregón, F, Silvera, D, Cantera, R, [y otros autores]. "Gene function prediction in five model eukaryotes exclusively based on gene relative location through machine learning". Scientific Reports. [en línea] 2022, 12: 11655. 11 h. DOI: 10.1038/s41598-022-15329-wes
dc.identifier.issn2045-2322-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/39141-
dc.description.abstractThe function of most genes is unknown. The best results in automated function prediction are obtained with machine learning-based methods that combine multiple data sources, typically sequence derived features, protein structure and interaction data. Even though there is ample evidence showing that a gene’s function is not independent of its location, the few available examples of gene function prediction based on gene location rely on sequence identity between genes of different organisms and are thus subjected to the limitations of the relationship between sequence and function. Here we predict thousands of gene functions in five model eukaryotes (Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and Homo sapiens) using machine learning models exclusively trained with features derived from the location of genes in the genomes to which they belong. Our aim was not to obtain the best performing method to automated function prediction but to explore the extent to which a gene's location can predict its function in eukaryotes. We found that our models outperform BLAST when predicting terms from Biological Process and Cellular Component Ontologies, showing that, at least in some cases, gene location alone can be more useful than sequence to infer gene function.es
dc.description.sponsorshipANII: FSDA_1_2017_1_14242es
dc.format.extent11 h.es
dc.format.mimetypeapplication/pdfes
dc.language.isoen_USes
dc.publisherSpringer Naturees
dc.relation.ispartofScientific Reports, 2022, 12: 11655.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectBioinformaticses
dc.subjectComparative genomicses
dc.subjectMachine learninges
dc.subjectProtein function predictionses
dc.titleGene function prediction in five model eukaryotes exclusively based on gene relative location through machine learninges
dc.typeArtículoes
dc.contributor.filiacionPazos Obregón Flavio, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.-
dc.contributor.filiacionSilvera Diego, IIBCE-
dc.contributor.filiacionCantera Rafael, IIBCE-
dc.contributor.filiacionYankilevich Patricio-
dc.contributor.filiacionGuerberoff Gustavo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionSoto Pablo, IIBCE-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.1038/s41598-022-15329-w-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
101038s4159802215329w.pdf2,78 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons