Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/38740
Cómo citar
Título: | Stratification learning: detecting mixed density and dimensionality in high dimensional point clouds |
Autor: | Haro, Gloria Randall, Gregory Sapiro, Guillermo |
Tipo: | Preprint |
Fecha de publicación: | 2006 |
Resumen: | The study of point cloud data sampled from a stratification, a collection of manifolds with possible different dimensions, is pursued in this paper. We present a technique for simultaneously soft clustering and estimating the mixed dimensionality and density of such structures. The framework is based on a maximum likelihood estimation of a Poisson mixture model. The presentation of the approach is completed with artificial and real examples demonstrating the importance of extending manifold learning to stratification learning. |
Descripción: | Trabajo presentado en la 20th Annual Conference on Neural Information Processing Systems, 2006 |
Citación: | Haro, G. Randall, G. Sapiro, G. Stratification learning : detecting mixed density and dimensionality in high dimensional point clouds [Preprint] Publicado en Bernhard Schölkopf, John Platt, Thomas Hoffman (Eds.): Advances in Neural Information Processing Systems 19. Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2006. doi https://doi.org/10.7551/mitpress/7503.003.0074 |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
HRS06.pdf | 702,08 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons