Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/38666
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Gómez, Gabriel | es |
dc.contributor.author | Belzarena, Pablo | es |
dc.date.accessioned | 2023-08-01T20:33:15Z | - |
dc.date.available | 2023-08-01T20:33:15Z | - |
dc.date.issued | 2009 | es |
dc.date.submitted | 20230801 | es |
dc.identifier.citation | Gómez, G, Belzarena, P. “Early traffic classification using Support Vector Machines”. Proceedings of the 5th International Latin American Networking Conference , LANC 2009, Pelotas, Brazil, 2009. doi: 10.1145/1636682.1636698 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/38666 | - |
dc.description.abstract | Internet traffic classiffication is an essential task for manag-ing large networks. Network design, routing optimization, quality of service management, anomaly and intrusion de-tection tasks can be improved with a good knowledge of the traffic. Traditional classiffication methods based on transport port analysis have become inappropriate for modern applications. | es |
dc.description.abstract | nbsp, Payload based analysis using pattern searching have privacy concerns and are usually slow and expensive in computa-tional cost. In recent years, traffic classiffication based on the statistical properties of | es |
dc.description.abstract | nbsp,flows has become a relevant topic. In this work we analyze the size of the firsts packets on both directions of a flow as a relevant statistical finngerprint. This finngerprint is enough for accurate traffic classiffcation and so can be useful for early traffic identification in real time. | es |
dc.description.abstract | nbsp, This work proposes the use of a supervised machine learning clustering method for traffic classiffcation based on Support Vector Machines. We compare our method accuracy with a more classical centroid based approach, obtaining promising results. | es |
dc.description.abstract | nbsp, | es |
dc.language | en | es |
dc.publisher | LANC | es |
dc.relation.ispartof | 5th International Latin American Networking Conference , LANC 2009, Pelotas, Brazil, 2009 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Traffic identification | es |
dc.subject | Traffic classification | es |
dc.subject | Support Vector Machines | es |
dc.subject.other | Telecomunicaciones | es |
dc.title | Early traffic classification using Support Vector Machines | es |
dc.type | Ponencia | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
dc.identifier.doi | doi: 10.1145/1636682.1636698 | es |
udelar.academic.department | Telecomunicaciones | - |
udelar.investigation.group | Análisis de Redes, Tráfico y Estadísticas de Servicios | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
GB09.pdf | 265,15 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons