english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/38666 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGómez, Gabrieles
dc.contributor.authorBelzarena, Pabloes
dc.date.accessioned2023-08-01T20:33:15Z-
dc.date.available2023-08-01T20:33:15Z-
dc.date.issued2009es
dc.date.submitted20230801es
dc.identifier.citationGómez, G, Belzarena, P. “Early traffic classification using Support Vector Machines”. Proceedings of the 5th International Latin American Networking Conference , LANC 2009, Pelotas, Brazil, 2009. doi: 10.1145/1636682.1636698es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/38666-
dc.description.abstractInternet traffic classiffication is an essential task for manag-ing large networks. Network design, routing optimization, quality of service management, anomaly and intrusion de-tection tasks can be improved with a good knowledge of the traffic. Traditional classiffication methods based on transport port analysis have become inappropriate for modern applications.es
dc.description.abstractnbsp, Payload based analysis using pattern searching have privacy concerns and are usually slow and expensive in computa-tional cost. In recent years, traffic classiffication based on the statistical properties ofes
dc.description.abstractnbsp,flows has become a relevant topic. In this work we analyze the size of the firsts packets on both directions of a flow as a relevant statistical finngerprint. This finngerprint is enough for accurate traffic classiffcation and so can be useful for early traffic identification in real time.es
dc.description.abstractnbsp, This work proposes the use of a supervised machine learning clustering method for traffic classiffcation based on Support Vector Machines. We compare our method accuracy with a more classical centroid based approach, obtaining promising results.es
dc.description.abstractnbsp,es
dc.languageenes
dc.publisherLANCes
dc.relation.ispartof5th International Latin American Networking Conference , LANC 2009, Pelotas, Brazil, 2009es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectTraffic identificationes
dc.subjectTraffic classificationes
dc.subjectSupport Vector Machineses
dc.subject.otherTelecomunicacioneses
dc.titleEarly traffic classification using Support Vector Machineses
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
dc.identifier.doidoi: 10.1145/1636682.1636698es
udelar.academic.departmentTelecomunicaciones-
udelar.investigation.groupAnálisis de Redes, Tráfico y Estadísticas de Servicios-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
GB09.pdf265,15 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons