english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/38649 Cómo citar
Título: Volume anomaly detection in data networks : an optimal detection algorithm vs. the PCA approach
Autor: Casas, Pedro
Fillatre, Lionel
Vaton, Sandrine
Nikiforov, Igor
Tipo: Capítulo de libro
Palabras clave: Network monitoring and traffic analysis, Network traffic modeling, Optimal volume anomaly detection
Descriptores: Telecomunicaciones
Fecha de publicación: 2009
Resumen: The crucial future role of Internet in society makes of network monitoring a critical issue for network operators in future network scenarios. The Future Internet will have to cope with new and different anomalies, motivating the development of accurate detection algorithms. This paper presents a novel approach to detect unexpected and large traffic variations in data networks. We introduce an optimal volume anomaly detection algorithm in which the anomaly-free traffic is treated as a nuisance parameter. The algorithm relies on an original parsimonious model for traffic demands which allows detecting anomalies from link traffic measurements, reducing the overhead of data collection. The performance of the method is compared to that obtained with the Principal Components Analysis (PCA) approach. We choose this method as benchmark given its relevance in the anomaly detection literature. Our proposal is validated using data from an operational network, showing how the method outperforms the PCA approach
Editorial: Springer
EN: Traffic Management and Traffic Engineering for the Future Internet. First Euro-NF Workshop, FITraMEn 2008 Porto, Portugal, December 2008. Revised Selected Papers.
Citación: Casas, P. Fillatre, L. Vaton, S, Nikiforov, I. “Volume anomaly detection in data networks : an optimal detection algorithm vs. the PCA approach.” Traffic Management and Traffic Engineering for the Future Internet. First Euro-NF Workshop, FITraMEn 2008 Porto, Portugal, December 2008. Revised Selected Papers. Berlin : Springer Verlag, 2009. Lecture Notes in Computer Science. 5464. ISBN 978-3-642-04575-2. https://doi-org.proxy.timbo.org.uy/10.1007/978-3-642-04576-9_7
Departamento académico: Telecomunicaciones
Grupo de investigación: Análisis de Redes, Tráfico y Estadísticas de Servicios
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
CFVN09.pdf280,09 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons