Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/38633
Cómo citar
Título: | Online coordinate descent for adaptive estimation of sparse signals |
Autor: | Angelosante, Daniele Bazerque, Juan Andrés Giannakis, Georgios B |
Tipo: | Ponencia |
Descriptores: | Sistemas y Control |
Fecha de publicación: | 2009 |
Resumen: | Two low-complexity sparsity-aware recursive schemes are developed for real-time adaptive signal processing. Both rely on a novel online coordinate descent algorithm which minimizes a time-weighted least-squares cost penalized with the scaled lscr1 norm of the unknown parameters. In addition to computational savings offered when processing time-invariant sparse parameter vectors, both schemes can be used for tracking slowly varying sparse signals. Analysis and preliminary simulations confirm that when the true signal is sparse the proposed estimators converge to a time-weighted least-absolute shrinkage and selection operator, and both outperform sparsity-agnostic recursive least-squares alternatives |
Editorial: | IEEE |
EN: | 15th Workshop on Statistical Signal Processing, Cardiff, UK, 2009. |
Citación: | Angelosante, D, Bazerque, J, Giannakis, G. “Online coordinate descent for adaptive estimation of sparse signals”. 15Th Workshop on Statistical Signal Processing, Cardiff, UK, 2009.. doi: 10.1109/SSP.2009.5278561 |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ABG09.pdf | 159,21 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons