english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/38633 Cómo citar
Título: Online coordinate descent for adaptive estimation of sparse signals
Autor: Angelosante, Daniele
Bazerque, Juan Andrés
Giannakis, Georgios B
Tipo: Ponencia
Descriptores: Sistemas y Control
Fecha de publicación: 2009
Resumen: Two low-complexity sparsity-aware recursive schemes are developed for real-time adaptive signal processing. Both rely on a novel online coordinate descent algorithm which minimizes a time-weighted least-squares cost penalized with the scaled lscr1 norm of the unknown parameters. In addition to computational savings offered when processing time-invariant sparse parameter vectors, both schemes can be used for tracking slowly varying sparse signals. Analysis and preliminary simulations confirm that when the true signal is sparse the proposed estimators converge to a time-weighted least-absolute shrinkage and selection operator, and both outperform sparsity-agnostic recursive least-squares alternatives
Editorial: IEEE
EN: 15th Workshop on Statistical Signal Processing, Cardiff, UK, 2009.
Citación: Angelosante, D, Bazerque, J, Giannakis, G. “Online coordinate descent for adaptive estimation of sparse signals”. 15Th Workshop on Statistical Signal Processing, Cardiff, UK, 2009.. doi: 10.1109/SSP.2009.5278561
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
ABG09.pdf159,21 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons