Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/38418
Cómo citar
Título: | Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds |
Autor: | Fenley, Sergio Potrie Altieri, Rafael |
Tipo: | Preprint |
Palabras clave: | Partial hyperbolicity, 3-manifold topology, Foliations, Ergodicity, Accessibility |
Fecha de publicación: | 2022 |
Resumen: | We study conservative partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds. We show that they are always accessible and deduce as a result that every conservative C1+ partially hyperbolic in a hyperbolic 3-manifold must be ergodic, giving an affirmative answer to a conjecture of Hertz-Hertz-Ures in the context of hyperbolic 3-manifolds. We also get some results for general partially hyperbolic diffeomorphisms homotopic to the identity and in some isotopy classes on Seifert manifolds. |
Descripción: | Publicado también como: Advances in Mathematics, 2022 , 401: 1-43. DOI: 10.1016/j.aim.2022.108315 |
Editorial: | arXiv |
EN: | Mathematics (Dynamical Systems), arXiv:1809.02284v3, mar 2022, pp.1-43 |
Citación: | Fenley, S y Potrie Altieri, R. "Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds". [Preprint]. Publicado en: Mathematics (Dynamical Systems). 2022, arXiv:1809.02284v3, Mar 2022, pp.1-43. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
1809.02284.pdf | 644,89 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons