english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/38376 Cómo citar
Título: Effective construction of Hilbert modular forms of half-integral weight
Autor: Sirolli, Nicolás
Tornaría, Gonzalo
Tipo: Preprint
Palabras clave: Number Theory
Fecha de publicación: 2022
Resumen: Given a Hilbert cuspidal newform g we construct a family of modular forms of half-integral weight whose Fourier coefficients give the central values of the twisted L-series of g by fundamental discriminants. The family is parametrized by quadratic conditions on the primes dividing the level of g, where each form has coefficients supported on the discriminants satisfying the conditions. These modular forms are given as generalized theta series and thus their coefficients can be effectively computed. By considering skew-holomorphic forms of half-integral weight our construction works over arbitrary totally real number fields, except that in the case of odd degree the square levels are excluded. It includes all discriminants except those divisible by primes whose square divides the level.
Descripción: Publicado también como: Mathematische Zeitschrift, 2022, 302: 2513–2543. DOI: 10.1007/s00209-022-03140-2
Editorial: arXiv
EN: Mathematics (Number Theory), arXiv: 2107.04483v2, oct 2022, pp. 1-30
Citación: Sirolli, N y Tornaría, G. "Effective construction of Hilbert modular forms of half-integral weight" [Preprint]. Publicado en: Mathematics (Number Theory). 2022, arXiv:2107.04483v2, oct 2022, pp. 1-30
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
2107.04483.pdf779,65 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons