english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/38195 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFavre, F.-
dc.contributor.authorAntepara, O.-
dc.contributor.authorOliet, C.-
dc.contributor.authorLehmkuhl, O.-
dc.contributor.authorPerez-Segarra, C.D.-
dc.date.accessioned2023-07-14T17:38:47Z-
dc.date.available2023-07-14T17:38:47Z-
dc.date.issued2019-
dc.identifier.citationFavre, F., Antepara, O., Oliet, C. y otros. An immersed boundary method to conjugate heat transfer problems in complex geometries. [Preprint] Publicado en: Applied Thermal Engineering, volume 148, number 5, Feb., 2019, p. 907-928. DOI:10.1016/j.applthermaleng.2018.11.099es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/38195-
dc.descriptionPublicado en Applied Thermal Engineering, v. 148, no. 5, February, 2019, p. 907-928.es
dc.description.abstractConsidering that the most common reason for electronic component failure is the excessive temperature level, an efficient thermal management design can prolong the operating life of the equipment, while also increasing its performance. Computational Fluid Dynamics and Heat Transfer (CFD&HT) have proved valuable in the study of these problems, since they can produce reliable fields of fluid flow, temperature and heat fluxes. Moreover, thanks to the recent advances in high-performance computers, CFD&HT numerical simulations are becoming viable tools to study real problems. The conventional approach, which consists of employing body-conformal meshes to the solids and fluids regions, often results costly and ineffective in applications with very complex geometries and large deformation. For these cases, an alternative approach, the Immersed Boundary Method (IBM), which employs a non-body conformal mesh and discretizes the entire domain using a special treatment in the vicinity of the solid-fluid interfaces, has proven more effective. In this work, an IBM was extended to simulate problems with conjugate heat transfer (CHT) boundary conditions taking into account the radiative exchange between surfaces. It was designed to work with any type of mesh (domain discretization) and to handle any body geometry. The implementation was validated and verified by several simulations of benchmark cases. Moreover, the IBM was applied in an industrial application which consists of the simulation of a Smart Antenna Module (SAM). All in all, the carried out studies resulted in a monolithic methodology for the simulation of realistic situations, where all three heat transfer mechanisms can be considered in complex geometries.es
dc.format.extent21 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectConjugate heat transferes
dc.subjectCooling electronicses
dc.subjectComputational fluid dynamicses
dc.subjectInmmersed boundary methodes
dc.subjectAutomotive antennaes
dc.titleAn immersed boundary method to conjugate heat transfer problems in complex geometries. Application to an automotive antenna.es
dc.typePreprintes
dc.contributor.filiacionFavre F., Universidad de la República (Uruguay). Instituto de Ingeniería Mecánica y Producción Industrial, Facultad de Ingeniería.-
dc.contributor.filiacionAntepara O., Universidad Politécnica de Cataluña – Barcelona (España). TechHeat and Mass Transfer Technological Center (CTTC).-
dc.contributor.filiacionOliet C., Universidad Politécnica de Cataluña – Barcelona (España). TechHeat and Mass Transfer Technological Center (CTTC).-
dc.contributor.filiacionLehmkuhl O., Universidad Politécnica de Cataluña – Barcelona (España). TechHeat and Mass Transfer Technological Center (CTTC).-
dc.contributor.filiacionPerez-Segarra C.D., Universidad Politécnica de Cataluña – Barcelona (España). TechHeat and Mass Transfer Technological Center (CTTC).-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Mecánica y Producción Industrial

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FAOLP19.pdfPreprint6,14 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons