english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/38135 Cómo citar
Título: Uniqueness of minimal unstable lamination for discretized Anosov flows
Autor: Guelman, Nancy
Martinchich Rodríguez, Santiago
Tipo: Preprint
Palabras clave: Dynamical Systems
Fecha de publicación: 2020
Resumen: We consider the class of partially hyperbolic diffeomorphisms f: M→ M obtained as the discretization of topological Anosov flows. We show uniqueness of minimal unstable lamination for these systems provided that the underlying Anosov flow is transitive and not orbit equivalent to a suspension. As a consequence, uniqueness of quasi-attractor is obtained. If the underlying Anosov flow is not transitive we get an analogous finiteness result provided that the restriction of the flow to any of its attracting basic pieces is not a suspension. A similar uniqueness result is also obtained for certain one-dimensional center skew-products.
Editorial: arXiv
EN: Mathematics (Dynamical Systems), arXiv: 2007.02088v, jul. 2020, pp 1-20
Citación: Guelman, N. y Martinchich, S. "Uniqueness of minimal unstable lamination for discretized Anosov flows" [Preprint]. Publicado en: Mathematics (Dynamical Systems). 2020, arXiv: 2007.02088v, jul. 2020, pp 1-20
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
2007.02088v.pdf374,3 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons