Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/38135
Cómo citar
Título: | Uniqueness of minimal unstable lamination for discretized Anosov flows |
Autor: | Guelman, Nancy Martinchich Rodríguez, Santiago |
Tipo: | Preprint |
Palabras clave: | Dynamical Systems |
Fecha de publicación: | 2020 |
Resumen: | We consider the class of partially hyperbolic diffeomorphisms f: M→ M obtained as the discretization of topological Anosov flows. We show uniqueness of minimal unstable lamination for these systems provided that the underlying Anosov flow is transitive and not orbit equivalent to a suspension. As a consequence, uniqueness of quasi-attractor is obtained. If the underlying Anosov flow is not transitive we get an analogous finiteness result provided that the restriction of the flow to any of its attracting basic pieces is not a suspension. A similar uniqueness result is also obtained for certain one-dimensional center skew-products. |
Editorial: | arXiv |
EN: | Mathematics (Dynamical Systems), arXiv: 2007.02088v, jul. 2020, pp 1-20 |
Citación: | Guelman, N. y Martinchich, S. "Uniqueness of minimal unstable lamination for discretized Anosov flows" [Preprint]. Publicado en: Mathematics (Dynamical Systems). 2020, arXiv: 2007.02088v, jul. 2020, pp 1-20 |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
2007.02088v.pdf | 374,3 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons