Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/38121
Cómo citar
Título: | Dynamical incoherence for a large class of partially hyperbolic diffeomorphisms |
Autor: | Barthelmé, Thomas Fenley, Sergio Frankel, Steven Potrie Altieri, Rafael |
Tipo: | Preprint |
Palabras clave: | Partial hyperbolicity, 3-manifold topology, Foliations, Classification |
Fecha de publicación: | 2020 |
Resumen: | We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends work of Bonatti, Gogolev, Hammerlindl and Potrie to the whole isotopy class. We relate the techniques with the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in the previous paper by the authors. The appendix reviews some consequences of the Nielsen-Thurston classification of surface homeomorphisms to the dynamics of lifts of such maps to the universal cover. |
Descripción: | Publicado también como: Ergodic Theory and Dynamical Systems , 2021, 41(11): 3227 - 3243 . DOI: 10.1017/etds.2020.113 |
Editorial: | arXiv |
EN: | Mathematics (Dynamical Systems), arXiv:2002.10315, feb 2020, pp1-18 |
Citación: | Barthelmé, T, Fenley, S, Frankel, S [y otro autor]. "Dynamical incoherence for a large class of partially hyperbolic diffeomorphisms". [Preprint]. Pulicado en: Mathematics (Dynamical Systems), 2020, arXiv:2002.10315, feb 2020, pp1-18. 18 h. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
2002.10315.pdf | 418,82 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons