Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/37377
Cómo citar
Título: | Weighted lens depth: Some applications to supervised classification |
Autor: | Cholaquidis, Alejandro Fraiman, Ricardo Gamboa, Fabrice Moreno, Leonardo |
Tipo: | Artículo |
Palabras clave: | Mathematics - Statistics theory |
Fecha de publicación: | 2020 |
Resumen: | Starting with Tukey’s pioneering work in the 1970’s, the notion of depth in statistics has been widely extended especially in the last decade. These extensions include high dimensional data, functional data, and manifold-valued data. In particular, in the learning paradigm, the depth-depth method has become a useful technique. In this paper we extend the notion of lens depth to the case of data in metric spaces, and prove its main properties, with particular emphasis on the case of Riemannian manifolds, where we extend the concept of lens depth in such a way that it takes into account non-convex structures on the data distribution. Next we illustrate our results with some simulation results and also in some interesting real datasets, including pattern recognition in phylogenetic trees using the depth–depth approach. |
Descripción: | Publicado también en: The Canadian Journal of Statistics, 2023, 51(2): 652-673. DOI: 10.1002/cjs.11724 |
Editorial: | arXiv |
EN: | Mathematics (Statistics Theory), arXiv:2011.11140, Nov 2020 |
Financiadores: | ANII: FCE_1_2019_1_156054 |
Citación: | Cholaquidis, A, Fraiman, R, Gamboa, F [y otro autor]. "Weighted lens depth: Some applications to supervised classification". [Preprint]. Publicado en: Mathematics (Statistics Theory). [en línea] 2020 arXiv:2011.11140, Nov 2020. 19 h. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
2011.11140.pdf | Preprint | 1,97 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons