Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/36121
Cómo citar
Título: | Viscosity solutions and hyperbolic motions : a new PDE method for the N-body problem |
Autor: | Maderna, Ezequiel Venturelli, Andrea |
Tipo: | Artículo |
Palabras clave: | N-body problem, Hamilton-Jacobi equation, Viscosity solutions |
Fecha de publicación: | 2020 |
Resumen: | We prove for the N-body problem the existence of hyperbolic motions for any prescribed limit shape and any given initial configuration of the bodies. The energy level h>0 of the motion can also be chosen arbitrarily. Our approach is based on the construction of global viscosity solutions for the Hamilton-Jacobi equation H(x,dxu)=h. We prove that these solutions are fixed points of the associated Lax-Oleinik semigroup. The presented results can also be viewed as a new application of Marchal’s Theorem, whose main use in recent literature has been to prove the existence of periodic orbits. |
Editorial: | Princeton University |
EN: | Annals of Mathematics, vol. 192, no. 2, 2020, pp. 499-550. |
Financiadores: | MATH AmSud Sidiham, CSIC grupo 618 e IFUM LIA-CNRS. |
Citación: | Maderna, E. y Venturelli, A. "Viscosity solutions and hyperbolic motions : a new PDE method for the N-body problem". Annals of Mathematics. [en línea]. 2020, vol. 192, no. 2, pp. 499-550. DOI: 10.4007/annals.2020.192.2.5. |
ISSN: | 0003-486X |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
MV20.pdf | Preprint | 720,26 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons