Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/35616
Cómo citar
Título: | Modeling of heat leak effect in round trip efficiency for Brayton pumped heat energy storage with liquid media, by cooling and heating of the reservoirs tanks |
Autor: | Salomone-González, D. Curto-Risso, Pedro Favre, Federico |
Tipo: | Artículo |
Palabras clave: | Energy storage, Molten salts, Coupled Brayton model, Round trip efficiency, Heat leak model |
Fecha de publicación: | 2022 |
Resumen: | For a pumped heat energy storage technology with commercial solar salt and a cold fluid such as methanol,
the performance in long times of the Brayton like model associated to the losses of the four tanks (two high
temperature units and two low temperature units) was studied. A round trip efficiency evaluation model
linked with the heat leak coefficient was proposed for the sensible storage tanks, considering the losses
for each face exposed to the environment. The different energy leaks and temperatures in the tanks were
calculated for hourly climatic fluctuations during a reference year for a reference city. A zero-dimensional
model was developed where radiation (direct and diffuse), convection and conduction effects were considered.
The obtained results showed that for long periods, time and insulation thickness have a significant influence on
the performance of the technology for long periods. For Brayton pumped heat energy storage technology with
solar salts the round trip efficiency, which can be reduced daily by 0.4% even for a considerable insulation
thickness of around 10% of the tank diameter. Winter–summer climatic conditions do not show a significant
difference for tanks at higher temperatures, but as the temperature decreases, the effect becomes more visible
but not decisive for the performance of the technology. The relatively high crystallization point of solar salt
represents a significant solidification risk that limits the operation of the PHES technology during waiting
periods for a surplus power to charge the system. |
Editorial: | Elsevier |
EN: | Journal of Energy Storage Vol. 46, Feb. 2022, 103793. |
Financiadores: | Agencia Nacional de Investigación e Innovación (ANII); Fondo Sectorial de Energía, Uruguay; proyecto FSE-1-2018-1-153077. |
Citación: | Salomone-González, D., Curto-Risso, P. y Favre, F. "Modeling of heat leak effect in round trip efficiency for Brayton pumped heat energy storage with liquid media, by cooling and heating of the reservoirs tanks". Journal of Energy Storage Vol. 46. [en línea] 2022 Feb. 2022, 103793. 16 p. DOI: https://doi.org/10.1016/j.est.2021.103793. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Mecánica y Producción Industrial |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
SCF22.pdf | Versión aceptada | 6,85 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons