Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12008/34134
How to cite
Title: | A brief analysis of the dense extreme inception network for edge detection |
Authors: | Grompone von Gioi, Rafael Randall, Gregory |
Type: | Artículo |
Keywords: | Image edge detection, Neural network, HED, Xception |
Issue Date: | 2022 |
Abstract: | This work describes DexiNed, a Dense Extreme Inception Network for Edge Detection proposed by Xavier Soria, Edgar Riba and Angel Sappa in [IEEE Winter Conference on Applications of Computer Vision (WACV), 2020]. The network is organized in blocks that extract edges at different resolutions, which are then merged to produce a multiscale edge map. For training, the authors introduced an annotated dataset (BIPED) specifically designed for edge detection. We perform a brief analysis of the results produced by DexiNed, highlighting its quality but also indicating its limitations. Overall, DexiNed produces state-of-the-art results. |
Publisher: | Centre Borelli, ENS Paris-Saclay; DMI, Universitat de les Illes Balears; Fing, Universidad de la República. |
IN: | IPOL. Journal Image Processing On Line, no 12, Oct 2022, pp. 389-403. |
Citation: | Grompone von Gioi, R y Randall, G. "A brief analysis of the dense extreme inception network for edge detection". IPOL. Journal Image Processing On Line. [en línea]. 2022, no 12, pp. 389-403. DOI: 10.5201/ipol.2022.423 |
ISSN: | 2105–1232 |
Academic department: | Procesamiento de Señales |
Investigation group: | Tratamiento de Imágenes |
License: | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
Appears in Collections: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Files in This Item:
File | Description | Size | Format | ||
---|---|---|---|---|---|
GR22a.pdf | Versión publicada | 28,56 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License