Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/34078
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Silini, Riccardo | - |
dc.contributor.author | Barreiro, Marcelo | - |
dc.contributor.author | Masoller, Cristina | - |
dc.date.accessioned | 2022-10-11T13:04:34Z | - |
dc.date.available | 2022-10-11T13:04:34Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Silini, R, Barreiro, M y Masoller, C. "Machine learning prediction of the Madden-Julian oscillation". npj Climate and Atmospheric Science. [en línea] 2021, 4: 57. 7 h. DOI: 10.1038/s41612-021-00214-6. | es |
dc.identifier.issn | 2397-3722 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/34078 | - |
dc.description.abstract | The socioeconomic impact of weather extremes draws the attention of researchers to the development of novel methodologies to make more accurate weather predictions. The Madden–Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on sub-seasonal time scales, and can promote or enhance extreme events in both, the tropics and the extratropics. Forecasting extreme events on the sub-seasonal time scale (from 10 days to about 3 months) is very challenging due to a poor understanding of the phenomena that can increase predictability on this time scale. Here we show that two artificial neural networks (ANNs), a feed-forward neural network and a recurrent neural network, allow a very competitive MJO prediction. While our average prediction skill is about 26–27 days (which competes with that obtained with most computationally demanding state-of-the-art climate models), for some initial phases and seasons the ANNs have a prediction skill of 60 days or longer. Furthermore, we show that the ANNs have a good ability to predict the MJO phase, but the amplitude is underestimated. | es |
dc.format.extent | 7 h | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | Springer Nature | es |
dc.relation.ispartof | npj Climate and Atmospheric Science, 2021, 4: 57 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Madden–Julian oscillation | es |
dc.subject | MJO | es |
dc.subject | Weather predictions | es |
dc.title | Machine learning prediction of the Madden-Julian oscillation | es |
dc.type | Artículo | es |
dc.contributor.filiacion | Silini Riccardo, Universitat Politècnica de Catalunya | - |
dc.contributor.filiacion | Barreiro Marcelo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. | - |
dc.contributor.filiacion | Masoller Cristina, Universitat Politècnica de Catalunya | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.1038/s41612-021-00214-6 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
101038s41612021002146.pdf | 1,38 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons