english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/34078 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSilini, Riccardo-
dc.contributor.authorBarreiro, Marcelo-
dc.contributor.authorMasoller, Cristina-
dc.date.accessioned2022-10-11T13:04:34Z-
dc.date.available2022-10-11T13:04:34Z-
dc.date.issued2021-
dc.identifier.citationSilini, R, Barreiro, M y Masoller, C. "Machine learning prediction of the Madden-Julian oscillation". npj Climate and Atmospheric Science. [en línea] 2021, 4: 57. 7 h. DOI: 10.1038/s41612-021-00214-6.es
dc.identifier.issn2397-3722-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/34078-
dc.description.abstractThe socioeconomic impact of weather extremes draws the attention of researchers to the development of novel methodologies to make more accurate weather predictions. The Madden–Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on sub-seasonal time scales, and can promote or enhance extreme events in both, the tropics and the extratropics. Forecasting extreme events on the sub-seasonal time scale (from 10 days to about 3 months) is very challenging due to a poor understanding of the phenomena that can increase predictability on this time scale. Here we show that two artificial neural networks (ANNs), a feed-forward neural network and a recurrent neural network, allow a very competitive MJO prediction. While our average prediction skill is about 26–27 days (which competes with that obtained with most computationally demanding state-of-the-art climate models), for some initial phases and seasons the ANNs have a prediction skill of 60 days or longer. Furthermore, we show that the ANNs have a good ability to predict the MJO phase, but the amplitude is underestimated.es
dc.format.extent7 hes
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherSpringer Naturees
dc.relation.ispartofnpj Climate and Atmospheric Science, 2021, 4: 57es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectMadden–Julian oscillationes
dc.subjectMJOes
dc.subjectWeather predictionses
dc.titleMachine learning prediction of the Madden-Julian oscillationes
dc.typeArtículoes
dc.contributor.filiacionSilini Riccardo, Universitat Politècnica de Catalunya-
dc.contributor.filiacionBarreiro Marcelo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.contributor.filiacionMasoller Cristina, Universitat Politècnica de Catalunya-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.1038/s41612-021-00214-6-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
101038s41612021002146.pdf1,38 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons