Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12008/33813
How to cite
Title: | Nonparametric regression based on discretely sampled curves |
Authors: | Forzani, Liliana Fraiman, Ricardo Llop, Pamela |
Type: | Artículo |
Keywords: | Nonparametric regression, Functional data, Discrete curves |
Issue Date: | 2020 |
Abstract: | In the context of nonparametric regression, we study conditions under which the consistency (and rates of convergence) of estimators built from discretely sampled curves can be derived from the consistency of estimators based on the unobserved whole trajectories. As a consequence, we derive asymptotic results for most of the regularization techniques used in functional data analysis, including smoothing and basis representation. |
Publisher: | Instituto Nacional Estatística |
IN: | REVSTAT – Statistical Journal, 2020, 18(1): 1-26 |
ISSN: | 2183-0371 |
Citation: | Forzani, L, Fraiman, R y Llop, P. "Nonparametric regression based on discretely sampled curves". REVSTAT – Statistical Journal. [en línea] 2020, 18(1): 1-26. 26 h. |
License: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Appears in Collections: | Publicaciones académicas y científicas - Facultad de Ciencias |
Files in This Item:
File | Description | Size | Format | ||
---|---|---|---|---|---|
FRAnon2020.pdf | 369,3 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License