english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/32272 How to cite
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAlonso Suárez, Rodrigo-
dc.contributor.advisorCastro, Alberto-
dc.contributor.advisorMarchesoni, Franco-
dc.contributor.authorCamiruaga, Ignacio-
dc.contributor.authorHerrera, Andrés-
dc.contributor.authorMozo, Franco-
dc.coverage.spatialAmérica del Sures
dc.coverage.spatialUruguayes
dc.date.accessioned2022-06-21T12:18:28Z-
dc.date.available2022-06-21T12:18:28Z-
dc.date.issued2022-
dc.identifier.citationCamiruaga, I., Herrera, A. y Mozo, F. DeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategies [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE : INCO, 2022.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/32272-
dc.descriptionTítulos obtenidos: Ignacio Camiruaga, Ingeniero en Computación; Andrés Herrera, Ingeniero electricista; Franco Mozo, Ingeniero electricista.-
dc.description.abstractThis project analyzes deep learning techniques applied to satellite-based cloudiness prediction, a vital component of a solar forecasting solution. The techniques can learn from a dataset to make extrapolation into the future of a sequence of images, a process usually named satellite nowcasting. In this way, intra-day image forecasting is addressed up to 5 hours into the future, with a 10-minute periodicity. The images used are from the GOES-16 geostationary satellite, covering a large portion of southeast South America, including Uruguay, the main region of interest. The new deep learning techniques are compared against strong baselines in the field, such as the persistence and fine-tuned Cloud Motion Vectors strategies, which were previously analyzed for this region in recent studies. Several state-of-the-art architectures are implemented and evaluated over different well-known computer vision metrics as well as forecasting metrics. Our results showed the ability of deep learning models to account for complex atmospheric dynamics and make accurate predictions in a short time span. The main contribution is a deep-learning model based on the U-Net architecture that surpasses in performance all the other state-of-the-art models implemented on this dataset. The new model is presented along with detailed ablation studies and thorough evaluations, that shed light on the behavior and many potential variations of the deep learning solutions.es
dc.format.extent111 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherUdelar.FI.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectSolar forecastes
dc.subjectU-Netes
dc.subjectDeep learninges
dc.subjectSatellite imageses
dc.subjectGOES-16 satellitees
dc.subjectPronóstico solares
dc.subjectAprendizaje profundoes
dc.subjectImágenes satelitaleses
dc.subjectSatélite GOES-16es
dc.titleDeepCloud : Intra-day satellite prediction of cloudiness using deep learning strategieses
dc.typeTesis de gradoes
dc.contributor.filiacionCamiruaga Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionHerrera Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionMozo Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.-
thesis.degree.grantorUniversidad de la República (Uruguay). Facultad de Ingeniería.es
thesis.degree.nameIngeniero Electricistaes
thesis.degree.nameIngeniero en Computación-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Appears in Collections:Tesis de grado - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
CHM22.pdfTesis de grado30,33 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons