english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/30874 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGarcía, Rodrigo-
dc.contributor.authorMartí, Arturo-
dc.contributor.authorCabeza, Cecilia-
dc.contributor.authorRubido, Nicolás-
dc.date.accessioned2022-02-18T13:26:44Z-
dc.date.available2022-02-18T13:26:44Z-
dc.date.issued2020-
dc.identifier.citationGarcía, R, Martí, A, Cabeza, C, [y otro] "Small-worldness favours network inference in synthetic neural networks". Scientific Reports. [en línea] 2020, 10: 2296. 10 h. DOI: 10.1038/s41598-20-59198-7es
dc.identifier.issn2045-2322-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/30874-
dc.description.abstractA main goal in the analysis of a complex system is to infer its underlying network structure from timeseries observations of its behaviour. The inference process is often done by using bi-variate similarity measures, such as the cross-correlation (CC) or mutual information (MI), however, the main factors favouring or hindering its success are still puzzling. Here, we use synthetic neuron models in order to reveal the main topological properties that frustrate or facilitate inferring the underlying network from CC measurements. Specifcally, we use pulse-coupled Izhikevich neurons connected as in the Caenorhabditis elegans neural networks as well as in networks with similar randomness and smallworldness. We analyse the efectiveness and robustness of the inference process under diferent observations and collective dynamics, contrasting the results obtained from using membrane potentials and inter-spike interval time-series. We fnd that overall, small-worldness favours network inference and degree heterogeneity hinders it. In particular, success rates in C. elegans networks – that combine small-world properties with degree heterogeneity – are closer to success rates in Erdös-Rényi network models rather than those in Watts-Strogatz network models. These results are relevant to understand better the relationship between topological properties and function in diferent neural networksen
dc.format.extent10 h.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherNature Researchen
dc.relation.ispartofScientific Reports, 2020, 10: 2296es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subject.otherNEURAL NETWORKSen
dc.subject.otherCOMPLEX SYSTEMSen
dc.titleSmall-worldness favours network inference in synthetic neural networksen
dc.typeArtículoes
dc.contributor.filiacionGarcía Rodrigo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.contributor.filiacionMartí Arturo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.contributor.filiacionCabeza Cecilia, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.contributor.filiacionRubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.1038/s41598-020-59198-7-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
10.1038s41598-020-59198-7.pdf1,58 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons