Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/25414
Cómo citar
Título: | MAVD: A dataset for sound event detection in urban environments. |
Autor: | Zinemanas, Pablo Cancela, Pablo Rocamora, Martín |
Tipo: | Ponencia |
Palabras clave: | SED database, Traffic noise, Urban sound |
Fecha de publicación: | 2019 |
Resumen: | We describe the public release of a dataset for sound event detection in urban environments, namely MAVD, which is the first of a series of datasets planned within an ongoing research project for urban noise monitoring in Montevideo city, Uruguay. This release focuses on traffic noise, MAVD-traffic, as it is usually the predominant noise source in urban environments. An ontology for traffic sounds is proposed, which is the combination of a set of two taxonomies: vehicle types (e.g. car, bus) and vehicle components (e.g. engine, brakes), and a set of actions related to them (e.g. idling, accelerating). Thus, the proposed ontology allows for a flexible and detailed description of traffic sounds. We also provide a baseline of the performance of state-of-the-art sound event detection systems applied to the dataset. |
Editorial: | New York University |
EN: | Detection and Classification of Acoustic Scenes and Events, DCASE 2019, New York, NY, USA, 25–26 oct, page 263--267 |
Citación: | Zinemanas, P., Cancela, P. y Rocamora, M. MAVD: A dataset for sound event detection in urban environments. [en línea]. EN: Detection and Classification of Acoustic Scenes and Events, 2019, New York, USA, 25–26 oct. New York : New York University, 2019. 5 p. DOI: https://doi.org/10.33682/kfmf-zv94 |
Cobertura geográfica: | Departamento de Montevideo, Uruguay |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ZCR19a.pdf | Versión definitiva | 1,73 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons