Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/22092
Cómo citar
Título: | Detection of low dimensionality and data denoising via set estimation techniques |
Autor: | Aaron, Catherine Cholaquidis, Alejandro Cuevas, A. |
Tipo: | Artículo |
Palabras clave: | Boundary estimation, Denoising procedure, Minkowski content |
Fecha de publicación: | 2017 |
Resumen: | This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics. |
Editorial: | Institute of Mathematical Statistics |
EN: | Electronic Journal of Statistics, 2017, 11 (2): 4596-4628 |
Citación: | Aaron, C.,Cholaquidis, A., Cuevas, A.Detection of low dimensionality and data denoising via set estimation techniques. Electronic Journal of Statistics, 2017, 11 (2): 4596-4628.doi: 10.1214/17-EJS1370 |
ISSN: | 1935-7524 |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
10121417EJS1370.pdf | 7,58 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons