english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/22047 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMcDonald, S.es
dc.contributor.authorBlock, A.es
dc.contributor.authorBeaucourt, Stéphaniees
dc.contributor.authorMoratorio, Gonzaloes
dc.contributor.authorVignuzzi, Marcoes
dc.contributor.authorPeersen, O. B.es
dc.date.accessioned2019-10-02T22:12:02Z-
dc.date.available2019-10-02T22:12:02Z-
dc.date.issued2016es
dc.date.submitted20190930es
dc.identifier.citationMcDonald, S., et al. Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo. Journal of Biological Chemistry, 2016, 291(27): 13999–14011. doi: 10.1074/jbc.M116.726596es
dc.identifier.issn0021-9258es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/22047-
dc.description.abstractPositive strand RNA viruses replicate via a virally encoded RNA-dependent RNA polymerase (RdRP) that uses a unique palm domain active site closure mechanism to establish the canonical two-metal geometry needed for catalysis. This mechanism allows these viruses to evolutionarily fine-tune their replication fidelity to create an appropriate distribution of genetic variants known as a quasispecies. Prior work has shown that mutations in conserved motif A drastically alter RdRP fidelity, which can be either increased or decreased depending on the viral polymerase background. In the work presented here, we extend these studies to motif D, a region that forms the outer edge of the NTP entry channel where it may act as a nucleotide sensor to trigger active site closure. Crystallography, stoppedflow kinetics, quench-flow reactions, and infectious virus studies were used to characterize 15 engineered mutations in coxsackievirus B3 polymerase. Mutations that interfere with the transport of the metal A Mg2+ ion into the active site had only minor effects on RdRP function, but the stacking interaction between Phe364 and Pro357, which is absolutely conserved in enteroviral polymerases, was found to be critical for processive elongation and virus growth. Mutating Phe364 to tryptophan resulted in a genetically stable high fidelity virus variant with significantly reduced pathogenesis in mice. The data further illustrate the importance of the palm domain movement for RdRP active site closure and demonstrate that protein engineering can be used to alter viral polymerase function and attenuate virus growth and pathogenesis.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherAmerican Society for Biochemistry and Molecular Biology Inc.es
dc.relation.ispartofJournal of Biological Chemistry, 2016, 291 (27), 13999-14011es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectAmino acidses
dc.subjectPolymerses
dc.subjectGenetic variantses
dc.subjectInfectious viruses
dc.subjectEnteroviruses
dc.subjectProtein Conformationes
dc.subjectRNA Replicasees
dc.subjectVirus Replicationes
dc.titleDesign of a genetically stable high fidelity coxsackievirus B3 polymerase that attenuates virus growth in vivoes
dc.typeArtículoes
dc.contributor.filiacionMoratorio, Gonzalo. Instituto Pasteur (París). Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Investigaciones Nucleares.es
dc.rights.licenceLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC –BY-NC-ND 4.0)es
dc.identifier.doi10.1074/jbc.M116.726596es
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
101074jbcM116726596.pdf3,73 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons