english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/21606 How to cite
Title: Analysis of ARMA solar forecasting models using ground measurements and satellite images
Authors: Marchesoni-Acland, Franco
Lauret, Philippe
Gómez, Alvaro
Alonso-Suárez, Rodrigo
Type: Preprint
Keywords: Forecasting, Solar irradiance, Adaptive filters, Satellite images
Issue Date: 2019
Abstract: As the solar photovoltaic (PV) share in the electricity grid is growing year by year, solar irradiance forecasting is becoming increasingly important. In this work the performance of a recursive formulation of ARMA models suitable for operational context using the Pampa Húmeda region as a case study is analyzed. Results are promising, as this simple adaptive algorithm does not require historical data and outperform persistence at all lead times. The improvement produced by adding satellite cloudiness data and short-term local variability as exogenous inputs is also evaluated. It is found that the spatially averaged satellite albedo is a useful input variable, improving the forecast performance, while the introduction of short-term variability produce negligible performance changes under this kind of models.
Description: Trabajo presentado a la 46th IEEE PV Specialist Conference, 16-22 de Junio, Chicago, USA, 2019
Citation: Marchesoni-Acland, F, Lauret, P, Gómez, A y otros."Analysis of ARMA solar forecasting models using ground measurements and satellite images" [Preprint] Publicado en las Actas de la 46th IEEE PV Specialist Conference, Chicago, USA, 2019.
Appears in Collections:Publicaciones académicas y científicas - Laboratorio de Energía Solar (LES)

Files in This Item:
File Description SizeFormat  
ARMAX_RLS_Uruguay.pdf647,09 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons