Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/21222
Cómo citar
Título: | Performance evaluation of an automatic fingerprint classification algorithm adapted to a Vucetich based classification system |
Autor: | Bartesaghi, Alberto Gómez, Alvaro Fernández, Alicia |
Tipo: | Artículo |
Palabras clave: | Human expert, Directional image, Original algorithm, Fingerprint image, Core point |
Descriptores: | PROCESAMIENTO de SEÑALES |
Fecha de publicación: | 2001 |
Resumen: | We study and evaluate an automatic fingerprint classification algorithm that we apply over the fully manual identification system being used by the Dirección Nacional de Identificación Civil (DNIC). To be compatible with the existing system and provide a gradual transition into a fully automatic procedure we mimic the classification scheme being used by DNIC technicians, which is based on a four-class Vucetich system. The classification algorithm we use is based on the method by Karu and Jain [4]. Some modifications to the original algorithm are proposed and evaluated over images extracted from a 4 million fingerprint card archive maintained by DNIC. The algorithm was also tested on fingerprints from the same individuals taken at two different points in time (separated several years) to further evaluate its performance and consistency. |
Editorial: | Springer |
Citación: | Bartesaghi, A., Gómez, A., Fernández, A. Performance evaluation of an automatic fingerprint classification algorithm adapted to a Vucetich based classification system [en línea] Bigun J., Smeraldi F. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2001. Lecture Notes in Computer Science, vol 2091. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons