EFECTO DEL MOMENTO DEL BAÑO Y LA APLICACIÓN DEL CLOMAZONE EN PREEMERGENCIA EN EL CONTROL DE CAPIN (Echinochloa spp.)

por

Hermann HUBER GARCIA
Pablo RODRIGUEZ SUAREZ

TESIS presentada como uno de los requisitos para obtener el título de Ingeniero Agrónomo

MONTEVIDEO
URUGUAY
2011
Tesis aprobada por:

Director:

Ing. Agr. Néstor Saldain

Ing. Agr. Grisel Fernández

Ing. Agr. Juana Villalba

Fecha: 8 de junio del 2011

Autor:

Hermann Huber

Pablo Rodríguez
AGRADECIMIENTOS

Al director de tesis Ing. Agr. (Msc.) Néstor Saldain por la dirección de este trabajo y por su apoyo en la resolución de nuestras inquietudes.

A los Ings. Agrs. (Dras.) Grisel Fernández, Juana Villalba y (PhD.) Guillermo Síri por estar disponibles ante cualquier duda.

Al equipo técnico y al personal de la Estación Experimental INIA Treinta y Tres y en especial al personal de la U.E.P.L (Unidad Experimental Paso de la Laguna).

Al Ing. Agr. Oscar Bentancur del Departamento de Biometría, Estadística y Computación de la Facultad de Agronomía por su orientación en el análisis estadístico de los datos.

A la Facultad de Agronomía por todo lo que nos brindo.

A nuestras familias por su apoyo durante tantos años, ya que no nos dejaron bajar los brazos en ningún momento.

A todas nuestras amistades que de una manera u otra colaboraron para que lleguemos a esta instancia.
TABLA DE CONTENIDO

Página

PAGINA DE APROBACIÓN..II
AGRADECIMIENTOS..III
LISTA DE CUADROS E ILUSTRACIONES..VII

1. INTRODUCCION...1

2. REVISIÓN BIBLIOGRAFICA...2
 2.1 Echinochloa spp. (CAPÍN)...2
 2.1.1 Importancia del capín en la producción de arroz...2
 2.1.2 Control químico de capín...3
 2.1.3 Manejo del agua para el control de capín...

2.2 CLOMAZONE..5
 2.2.1 Modo de acción..5
 2.2.1.1 Absorción y translocación...6
 2.2.1.2 Sitio de acción...6
 2.2.2 Sintomatología..7
 2.2.3 Interacción con el suelo...7
 2.2.3.1 Movilidad..7
 2.2.3.2 Lixiviación...8
 2.2.3.3 Volatilización...9
 2.2.4 Mecanismo de degradación...11
 2.2.4.1 Degradación microbiana..11
 2.2.4.2 Degradación por luz..12
 2.2.5 Persistencia en el suelo..12
 2.2.6 Persistencia en el agua..13
 2.2.7 Control de malezas por el clomazone...14
 2.2.8 Mezclas con clomazone..15
 2.2.9 Métodos de aplicación y dosis..

2.2.10 Residualidad en el suelo..17
 2.2.11 Importancia de la humedad del suelo..17
 2.2.12 Selectividad..18

3. MATERIALES Y MÉTODOS...21
 3.1 LOCALIZACIÓN..21
 3.2 SUELO...21
 3.3 CLIMA..21
 3.4 EXPERIMENTO..23
 3.5 DISEÑO EXPERIMENTAL...23
 3.6 TRATAMIENTOS..23
3.7 MANEJO

3.7.1 Laboreo

3.7.2 Siembra

3.7.3 Fertilización

3.7.4 Taipas y auxiliares

3.7.5 Manejo del herbicida

3.7.6 Manejo del baño

3.7.7 Cosecha

3.8 MEDICIONES REALIZADAS

3.8.1 Análisis de suelo

3.8.2 Conteo de plantas de arroz

3.8.3 Altura de las plantas de arroz a macollaje

3.8.4 Conteo de tallos de arroz

3.8.5 Determinación de biomasa e índice de cosecha

3.8.6 Lectura a inicio de floración

3.8.7 Lectura de control del capín a la cosecha

3.8.8 Altura del arroz a la cosecha

3.8.9 Rendimiento en grano

3.8.10 Humedad en el grano

3.8.11 Componentes del rendimiento

3.8.12 Rendimiento de grano seco

3.8.13 Calidad industrial

3.9 ANÁLISIS ESTADÍSTICO

4. RESULTADOS Y DISCUSIÓN

4.1 NÚMERO DE PLANTAS

4.2 ALTURA DE LA PLANTA DE ARROZ

4.2.1 Altura a macollaje

4.2.2 Altura a cosecha

4.3 BIOMASA DE ARROZ

4.4 NUMERO DE TALLOS DE ARROZ AL MACOLLAJE

4.5 FECHA A INICIO DE FLORACIÓN

4.6 ÍNDICE DE COSECHA

4.7 RENDIMIENTO DE GRANO SECO DE ARROZ

4.8 COMPONENTES DEL RENDIMIENTO

4.8.1 No. de panojas m\(^{-2}\)

4.8.2 No. de granos totales y llenos panoja\(^{-1}\)

4.8.3 Peso de mil granos

4.9 PORCENTAJE DE ESTERILIDAD

4.10 CALIDAD INDUSTRIAL DEL ARROZ

4.10.1 Porcentaje de blanco total y entero

4.10.2 Porcentaje de yeso y mancha

4.11 CONTROL DE *Echinochloa* spp. A COSECHA
4.12 CORRELACIONES ENTRE EL RENDIMIENTO Y LAS DEMÁS VARIABLES EVALUADAS…………………………………………………………59

5. CONCLUSIONES ...61
6. RESUMEN ...62
7. SUMMARY ..63
8. BIBLIOGRAFÍA ...64
9. ANEXOS ..69
LISTA DE CUADROS E ILUSTRACIONES

Cuadro No.	Página
1. Comparación de solubilidad en agua y presión de vapor para cuatro herbicidas | 9
2. Potencial de volatilización de cuatro herbicidas | 9
3. Tratamientos estudiados UEPL, 2009-10 | 24
4. Parámetros de siembra de INIA Olimar. UEPL, 2009-10 | 25
5. Condiciones de humedad del suelo de las parcelas testigos del día de la aplicación preemergente de clomazone. UEPL, 2009-10 | 26
6. Resultados de análisis de suelo. UEPL, 2009-10 | 28
7. Valores medios y coeficientes de variación para los componentes del rendimiento | 48
8. Media y coeficiente de variación para los componentes de la calidad industrial | 54
9. Coeficientes de correlación de Pearson y la significación encontrada en el estudio de correlaciones entre las variables medidas durante el ciclo vegetativo y a la cosecha con el rendimiento de arroz | 59
10. Coeficientes de correlación de Pearson y significación encontrada en el estudio de correlaciones entre el rendimiento de arroz y las variables que componen el rendimiento y la calidad | 60

Figura No.

1. Estructura de la molécula de clomazone | 5
2. Evolución de las precipitaciones por década para la serie histórica 1972-2010 y para el período octubre-abril 2009-2010. UEPL 2009-10 | 22
3. Evolución de la temperatura media por década para la serie histórica 1972-2010 y para el período octubre-abril 2009-2010. UEPL 2009-10 | 22
4. Efecto de la dosis de clomazone sobre el número de plantas..........................36
5. Precipitaciones diarias del mes de noviembre...37
6. Temperaturas mínimas y máximas diarias del mes de noviembre..............37
7. Efecto de la dosis de clomazone en la altura de las plantas de arroz al macollaje y a la cosecha...39
8. Efecto del momento del baño en la altura de las plantas de arroz a la cosecha...40
9. Efecto de la dosis de clomazone sobre la biomasa determinada en tres momentos diferentes...42
10. Efecto de la dosis de clomazone sobre el número de plantas y el número de tallos de arroz m\(^{-2}\)..43
11. Efecto de la dosis de clomazone sobre los días a inicio de floración...........44
12. Efecto del momento del baño sobre los días a inicio de floración.............45
13. Efecto de la dosis de clomazone sobre el índice de cosecha.....................46
14. Efecto de la dosis de clomazone sobre el rendimiento de arroz..................47
15. Efecto de la dosis de clomazone sobre el número de panojas m\(^{-2}\).........49
16. Efecto de la dosis de clomazone sobre el número de granos totales y llenos panoja\(^{-1}\)...50
17. Efecto de la dosis de clomazone sobre el peso de mil granos....................52
18. Efecto de la dosis de clomazone sobre el porcentaje de esterilidad............53
19. Efecto de la dosis de clomazone sobre el porcentaje de blanco total y de grano entero...55
20. Efecto de la dosis de clomazone sobre el porcentaje de yeso y de mancha..57
21. Efecto de la dosis de clomazone sobre el control de capín......................58
1. INTRODUCCION

El uso de herbicida en base a clomazone es muy importante en términos del área arrocera del Uruguay. En un revelamiento sobre el 87% del área, representado por las empresas que presentan información, se estableció que se usó solo o en mezcla de tanque con otros herbicidas en unas 118 mil ha. (Molina et al., 2010). En los últimos años, el uso como preemergente aplicado solo o en mezcla de tanque con glifosato aumentó, teniéndose información de que en la pasada primavera muy húmeda, esta práctica se adoptó en un área mayor.

El clomazone es el principio activo más usado en diversas mezclas de tanque o solo, para el control de gramíneas anuales (Echinochloa spp., Digitaria sanguinalis y Panicum ditochomiflorum) en el cultivo de arroz. También, contribuye a la detención temporal del crecimiento en algunas gramíneas perennes (Paspalum distichum, Leerzia hexandra, Luziola peruviana y Cynodon dactylon).

El clomazone es muy soluble en agua pudiéndose mover junto con el agua de riego, lo que determina en el área tratada que existan sitios con menor dosis que la pretendida lo que podría reducir el control y otros sitios con dosis más elevadas que pueden perjudicar al arroz. Ambos hechos han sido observados en el campo, agregándose que cuando se baña y se libera el agua en las vías de drenaje, los síntomas típicos de albinismo son observados en la vegetación circundante.

Cuando este herbicida se aplica bajo condiciones de suelo húmedo con alta demanda atmosférica se volatiliza siendo una parte de lo aplicado perdida, reduciéndose la dosis efectivamente aplicada. Esa capacidad de volatilizarse provoca deriva secundaria, trasladándose el herbicida hacia afuera del área tratada.

El objetivo de este estudio es evaluar el control de capín y el rendimiento del cultivar de arroz INIA Olimar debido al efecto de los tratamientos herbicidas en base a clomazone interaccionados con distintos momentos de realización del baño.
2. REVISIÓN BIBLIOGRÁFICA

2.1 Echinochloa spp. (CAPÍN)

2.1.1 Importancia del capín en la producción de arroz

En general, la interferencia de malezas en los cultivos se produce con mayor intensidad en el período inicial del desarrollo, presentando el mismo comportamiento el cultivo de arroz (Johnson et al., citados por Pinto et al., 2008).

En Brasil las malezas compiten con el arroz por luz, agua y nutrientes, convirtiéndose así en un factor importante que limita la productividad del arroz (Sosbai, citado por Agostinetto et al., 2007).

Smith, citado por Ottis y Talbert (2007), determinó que el capín es la maleza más competitiva con el arroz a excepción del arroz rojo (Oryza sativa L).

El efecto de la interferencia del capín en el cultivo de arroz, depende de la densidad de las plantas de arroz, de la densidad de las malezas, de la duración de la interferencia, de los regímenes de fertilización, y de los cultivares utilizados (Smith, citados por Ntanos et al., 2000).

El efecto negativo de la presencia de capín en el cultivo de arroz se debe a la alta capacidad competitiva por los recursos limitantes, a la dificultad de su control, a la presencia en la cosecha que dificulta la recolección, a la depreciación de la calidad del producto que disminuye el valor comercial del cultivo y también en algunas situaciones a la aparición de biotipos resistentes a ciertos herbicidas (Kissmann, López-Martínez et al., citados por Pinto et al., 2008).

La interferencia que el capín promueve puede persistir durante todo el ciclo del cultivo. En Arkansas una densidad de 50 plantas m$^{-2}$ de capín durante todo el ciclo del arroz, redujo el rendimiento de grano en los cultivares
“Newbonnet” y “Lemont” un 28 y 65%, respectivamente (Smith, Smith y Khodayari, citados por Ntanos et al., 2000).

Miller, citado por Mudge et al. (2005b) demostró que 10 plantas m\(^2\) de capín redujo el rendimiento de arroz en un 25%. En Grecia, la competencia de 10 plantas m\(^2\) de capín durante todo el ciclo deprimió el rendimiento en un 30% (Ntanos et al., citados por Ntanos et al., 2000).

Ottis y Talbert (2007) determinaron que la presencia de capín es un factor limitante importante para los componentes y el rendimiento del arroz en los cultivares modernos. Ellos encontraron que el rendimiento de arroz no se vio afectado por la densidad del mismo en los cultivares “Wells” y “CL 161” de grano largo ni tampoco en el híbrido “XL8”. Sin embargo, la densidad de los cultivares así como el control de capín en “Wells” y “CL 161” afectaron la producción de biomasa aérea, el peso de la panoja, y el índice de cosecha. A medida que la densidad de arroz disminuyó o que aumentó el control de capín, mayor fue la producción de biomasa y el índice de cosecha. Mientras que para el híbrido “XL8” encontraron una interacción entre la densidad del arroz y el control de capín; cuando el control de capín alcanzó un 30 %, el aumento en la densidad de arroz redujo la biomasa y el índice de cosecha, revirtiéndose estos resultados cuando el control logrado fue de un 90 %.

Estos mismos autores encontraron que la densidad de panojas en el arroz aumento 14 panojas m\(^2\) por cada 10% de aumento en el control de capín. Los rendimientos de los tres cultivares se afectaron de manera similar por el control de capín, observándose un aumento de 750 kg. ha\(^{-1}\) por cada 10% de mejora en el control de capín.

Andres y Machado, citados por Agostinetto et al. (2007) establecieron que la falta de control de las malezas durante el ciclo del cultivo, causó pérdidas en el rendimiento de grano entre el 80 y 90%.

2.1.2 Control químico de capín

En Brasil independientemente del sistema utilizado en el cultivo de arroz, el control químico es la principal alternativa para el manejo del capín, por su eficiencia y practicidad (Andres y Machado, citados por Pinto et al., 2008).
En otros países algunos de los herbicidas más utilizados en arroz son quinclorac, molinate, propanil, pendimetalina, y tiobencarb. Estos herbicidas se aplican en diversos momentos que van desde la preemergencia hasta después de la inundación para controlar malezas como *E. crus-galli* (Jordan, Jordan et al., Smith y Khodayari, citados por Scherder et al., 2004).

El clomazone, propanil y quinclorac son los tres herbicidas más usados en Arkansas (Norsworthy et al., citados por Norsworthy et al., 2009)

En Uruguay el control de capín se hace con aplicaciones de herbicidas en diferentes momentos, tanto solos como en mezclas de tanque con otros herbicidas. Las aplicaciones se realizan desde la preemergencia hasta la postemergencia temprana, siendo los herbicidas más utilizados el clomazone, bispiribac, quinclorac, propanil y cyhalofop-butyl (Deambrosi y Saldain, 2009). Además de estos herbicidas en estas últimas zafra se ha visto incrementado el uso de penoxsulam.¹

En Grecia el control de capín con propanil fue mucho menor (46% o menos) en comparación con cualquier tratamiento de cyhalofop-butyl aplicado en las parcelas drenadas. Éste bajo control de capín con propanil probablemente se debió a la existencia de biotipos resistente de capín al propanil, como resultado del uso repetido de este herbicida por los cultivadores de arroz (Giannopolitis y Vassiliou, citados por Ntanos et al., 2000).

2.1.3 Manejo del agua para el control de capín

Carlesso et al., citados por Agostinetto et al. (2007) informaron que la anticipación del inicio del riego en el cultivo de arroz, promovió mayor crecimiento de las plantas, favoreciendo el establecimiento del cultivo a expensas de las malezas. En este mismo sentido, Agostinetto et al. (2007) observaron que la capacidad competitiva del arroz se favorece en relación a la del capín, con el ingreso temprano del agua a la chacra luego de la aplicación de cyhalofop-butyl.

De acuerdo a este mismo autor el retraso en la entrada de agua en el cultivo de arroz en 1, 10 y 20 días después de la aplicación del herbicida en presencia de 1 planta de capín m², resultó en pérdidas de rendimiento del 8, 10 y 11%, respectivamente.

Kissmann, citado por Pinto et al. (2008) observó que el riego después de la aplicación de herbicidas ayudó al control de malezas y mejoró el rendimiento del cultivo, ya que el retraso de la entrada de agua en el cultivo permite la reinfestación, especialmente de las especies de la familia Poaceae.

Dentro de esta familia se encuentran especies que son malezas en el cultivo de arroz tales como Echinochloa spp., Leerzia hexandra, Luziola peruviana, Digitaria sanguinalis, Leptochloa filiformis, Panicum dichotomiflorum, Brachiaria decumbens, B. platyphylla, Paspalum hydrophilum, y P. distichum (Taylor, 1989).

2.2 CLOMAZONE

Figura No. 1: Estructura de la molécula de clomazone.

El clomazone es un herbicida no iónico del grupo químico de las isoxazolidinona, con una solubilidad en agua de 1100 mg l⁻¹, una presión de vapor de 19,2 mPa a 25 ºC y un Kow de 350 (WSSA, 2007).

2.2.1 Modo de acción

La citocromo p450 está involucrada en la conversión del clomazone al metabolito fitotóxico más activo (5-cetoclomazone) (Ferhatoglu et al., citados por Siminszky et al., 2006).
La activación del clomazone a 5-cetoclomazone requiere de oxidación del compuesto. Las oxigenasas como la p450 que detoxifican el sustrato xenobiótico pueden convertir al clomazone en el metabolito tóxico, causando daño en las especies susceptibles, inhibiendo la formación de clorofila y carotenoides. Sería posible usar inhibidores de la oxigenasa como protector para bloquear la activación del clomazone en los cultivos, protegiendo de este modo a los mismos (TenBrook y Tjeerdema, 2006).

2.2.1.1 Absorción y translocación

El clomazone es absorbido por raíces y brotes emergentes, y se mueve principalmente por el xilema a las hojas de las plantas, siendo el movimiento por el floema insignificante (Duke y Paul, citados por Lee et al., 2004).

En un ensayo llevado a cabo por Weimer et al. (1991), el clomazone fue rápidamente traslocado a los brotes, resultando en bajas concentraciones en las raíces.

2.2.1.2 Sitio de acción

TenBrook et al., Mueller et al., León et al., citados por Mathó2, observaron que el metabolito activo del clomazone es el 5-cetoclomazone que inhibe la vía MEP (2C-metil-D-eritrol 4-fosfato). Ésta está encargada de la formación de los isopropenos precursores de los pigmentos β-carotenos en el cloroplasto. La inhibición de la vía MEP se debe a cambios en la enzima 1-deoxi-D-xilulosa 5-fosfato sintetasa (DXS) que bloquea la síntesis de isopropenos.

El 5-cetoclomazone posee semejanzas estructurales con la TPP (Tiamina pirofosfato) que es un cofactor de la enzima DXS, esta semejanza provoca una competencia en el sitio de unión de la DXS a la TPP (TenBrook y Tjeerdema, Culpepper et al., citados por Mathó2).

2 Mathó, C. s.f. Revisión bibliográfica de clomazone (sin publicar).
2.2.2 Sintomatología

Según Soltani et al. (2004), el albinismo de las hojas era específico de parcelas tratadas con clomazone. En las especies susceptibles, el clomazone reduce o impide la acumulación de pigmentos plastidios y produce plantas con un aspecto descolorido (blanco, amarillo o verde pálido) (Duke et al., citados por Zhang et al., 2004).

También en las especies tolerantes, como la soja (Glycine max) y frijol pinto (Phaseolus vulgaris L.), se ha observado albinismo en las hojas a causa de la aplicación del clomazone (Blackshaw y Esaú, citados por Webster et al., 2006).

Según Modernel (2007) el clomazone puede provocar ligera clorosis en el cultivo de arroz que desaparece y no afecta el rendimiento.

2.2.3 Interacción con el suelo

2.2.3.1 Movilidad

De acuerdo a lo informado por la WSSA (2007), en estudios de laboratorio el clomazone tiene baja movilidad en la mayoría de los suelos, pero presenta moderada movilidad en arena fina. La forma degradada de clomazone en el suelo bajo condiciones anaeróbicas tiene mayor movilidad que la forma sin degradar en todos los suelos estudiados.

Lee et al. (2004) en un ensayo realizado en tres suelos franco arenosos (Edna 0,84%; Nada 0,75%; y Crowley 0,5% de carbono orgánico) y en uno franco arcillo limoso (Morey 1,32% de c. org.), bajo cuatro potenciales de agua (-90; -75: -33; 0 kPa), observaron que la concentración total disponible para la planta de clomazone en la solución del suelo se correlacionó negativamente con el contenido de carbono orgánico, siendo éste mejor predictor que el porcentaje de arcilla o de arena del suelo. Esto se dio porque el clomazone tiene alta afinidad por la materia orgánica.
Existe movilidad reducida en suelos con moderado a alto contenido de materia orgánica (Loux et al., citados por Noldin et al., 2001).

Los principales procesos que limitan el movimiento del clomazone en el suelo son los de sorción y están directamente relacionados con el contenido de materia orgánica (M.O.) del suelo. En este trabajo el clomazone tuvo una adsorción al suelo moderada, con un Kd = 0,92 para un suelo franco arcilloso con 0,99% c. org. y un Kd= 1,12 en un suelo franco con 1,28% c. org., siendo un 22% mayor la adsorción en el suelo franco en comparación con el suelo franco arcilloso. El Kom calculado para los dos suelos estudiados fue de 54 en el franco arcilloso y 51 en el franco (Kirksey et al., 1996).

Mitchell et al., citados por Bollich et al. (2000) informaron que la formulación de microencapsulados de clomazone plantea menos riesgo de movimiento fuera de sitio al controlar la velocidad a la que se libera el ingrediente activo.

2.2.3.2 Lixiviación

Mervosh et al. (1995b), encontró que el clomazone lixivia más profundo en suelos arenosos que en los suelos franco limoso y franco arcillosos. En el suelo arenoso el clomazone percoló a través de todo el perfil estudiado, mientras que en los demás suelos llegó hasta los primeros 14 cm, siendo la mayor concentración en los 7 cm más superficiales. En esta profundidad, se encontró que la planta indicadora del bioensayo mostró más síntoma de albinismo (4 veces mayor) en los suelos franco limosos y franco arcillosos que en el suelo arenoso.

Estos mismos autores observaron que el movimiento de clomazone esta inversamente relacionado con el contenido de carbono orgánico en los tres suelos estudiados, demostrando una reducción de la biodisponibilidad del clomazone con el aumento del carbono orgánico. En el suelo arenoso encontró que el clomazone está más biodisponible en profundidad por una mayor lixiviación, promovida por un menor contenido de carbono orgánico y menor tiempo de residencia en el perfil del suelo.
Existe evidencia publicada que el movimiento del clomazone por debajo de los primeros 10 cm de suelo en condiciones de campo es insignificante (Curran et al., Molinos et al., citados por Cumming et al., 2002).

2.2.3.3 Volatilización

El siguiente cuadro presenta una comparación de la presión de vapor y la solubilidad en agua entre cuatro herbicidas, clomazone, molinate y quinclorac usados en el cultivo de arroz y el EPTC que es un herbicida considerado muy volátil, dicha comparación está ordenada por la presión de vapor en forma decreciente.

Cuadro No. 1: Comparación de solubilidad en agua y presión de vapor para cuatro herbicidas.

<table>
<thead>
<tr>
<th></th>
<th>EPTC</th>
<th>molinate</th>
<th>clomazone</th>
<th>quinclorac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solubilidad en agua 20ºC (mg l⁻¹)</td>
<td>370</td>
<td>1100</td>
<td>1102</td>
<td>62</td>
</tr>
<tr>
<td>Presión de vapor 25 ºC (Pa)</td>
<td>4,5</td>
<td>7,46 E⁻¹</td>
<td>1,92 E⁻²</td>
<td>< 1,33 E⁻⁵</td>
</tr>
</tbody>
</table>

Fuente: WSSA 2007

Cuadro No. 2: Potencial de volatilización de cuatro herbicidas.

<table>
<thead>
<tr>
<th>Presión de vapor del herbicida a 25 ºC (Pa)</th>
<th>Interpretación</th>
<th>Herbicida</th>
</tr>
</thead>
<tbody>
<tr>
<td>x < 1,0 E⁻⁸</td>
<td>Bajo potencial de volatilización</td>
<td></td>
</tr>
<tr>
<td>1,0 E⁻⁸ < x < 1,0 E⁻³</td>
<td>Medio potencial de volatilización</td>
<td>quinclorac</td>
</tr>
<tr>
<td>x > 1,0 E⁻³</td>
<td>Alto potencial de volatilización</td>
<td>EPTC, molinate, clomazone</td>
</tr>
</tbody>
</table>

Fuente: adaptado de Jenkins y Thomson (1999)

Este cuadro muestra el potencial de volatilización de los cuatro herbicidas presentados en el cuadro No. 1, tomando como indicador de volatilización a la presión de vapor de los herbicidas; de estos cuadros se desprende que el clomazone tiene menor potencial de volatilización que el EPTC y molinate, pero mayor que el de quinclorac.
Mervosh et al. (1995a) cuando trabajaron con un rango de humedad del suelo entre 1500 y 100 kPa (equivalente a 134 y 247 g de agua kg\(^{-1}\)) no observaron volatilización del clomazone desde el suelo. Sin embargo en otro ensayo con un nivel de humedad del suelo preestablecido (210 g de agua kg\(^{-1}\)), la volatilización se incrementó con el aumento de la temperatura en el rango estudiado (5 - 35 ºC). La volatilización acumulada a los 84 días a 35 ºC fue de 7,2 % de lo aplicado, mientras que a 25 ºC alcanzó un 3%.

Mervosh et al. (1995b) comparando la formulación concentrado emulsionable (CE) de clomazone con varios tamaños de la formulación encapsulada usando almidón, a las 8 hs de aplicado el herbicida en un suelo con 240 g de agua kg\(^{-1}\) de suelo seco, determinaron una volatilización de 1,2% en la formulación líquida, siendo ésta 3 veces mayor que en la formulación encapsulada. Ellos llegaron a la conclusión de que el tamaño del gránulo es más importante que la composición del mismo, ya que se volatilizó más con gránulos pequeños que con gránulos grandes y no se encontraron diferencias significativas por la composición del gránulo.

En este mismo trabajo a las 4 horas de la aplicación de 1100 g ha\(^{-1}\) de clomazone se saturó el suelo (equivalente a 0 kPa) con una lluvia simulada, provocando un aumento de la volatilización en todas las formulaciones especialmente en la formulación encapsulada. Esto se debe a que las gránulos de almidón al humedecerse se hinchan, aumentando la cantidad de herbicida que difunde a la superficie del gránulo y a la solución del suelo.

Locke et al. (1996) observaron daños severos (>80%) atribuidos a vapores de clomazone en los 10 días posteriores a la aplicación de 1400 g ha\(^{-1}\) en un estudio de invernáculo. Con respecto al efecto del contenido de humedad del suelo en la volatilización, estos autores encontraron menores daños en suelos con bajo contenido de humedad (20 g de agua kg\(^{-1}\) de suelo seco). Los mayores daños se observaron con humedad del suelo de 180 g de agua kg\(^{-1}\), perdurando estos efectos por 50 días.

Estos mismos autores apreciaron que a mayores temperaturas se encontraron menores cantidades de clomazone en el suelo debido a una mayor volatilización del herbicida. Además, no se encontraron efectos significativos en la reducción de la volatilización por la incorporación de este herbicida al suelo.
2.2.4 Mecanismo de degradación

2.2.4.1 Degradación microbiana

La degradación ya sea química o biológica, es un mecanismo importante en la pérdida de clomazone del suelo (Kirksey et al., 1996).

En un estudio de laboratorio llevado a cabo por Mervosh et al. (1995a) en el cual se midió la degradación del clomazone en un suelo franco arcillo-limoso, observaron que ésta dependía de la actividad biológica del suelo, aunque la respiración microbiana en este estudio no siempre se correlacionó con la mineralización. Además vieron que en suelos fríos esta mineralización era baja, debido a una menor actividad microbiana.

En el manual de herbicidas de la WSSA (2007) se reportó que la tasa y la magnitud de la degradación microbiana variaron con las características del suelo. Se destaca que la degradación del clomazone es más rápida bajo inundación (anaerobiosis) que en condiciones aeróbicas.

Según lo observado por Tomco et al. (2010) en un ensayo realizado en California sobre un suelo franco arcilloso con 0,41% de c. org. aplicando una dosis equivalente a 673 g ha⁻¹ de clomazone, demostraron que este herbicida se degrada más rápidamente bajo condiciones anaeróbicas que en condiciones aeróbicas. En condiciones anaeróbicas el clomazone tuvo una vida media de 7,9 días, pasando a encontrarse bajo la forma de clomazone de anillo abierto a los 3 días de aplicado, hallándose un máximo de éste compuesto de 67,4% de lo aplicado a los 38 días. En condiciones aeróbicas la vida media fue de 47,3 días, formando principalmente residuos ligados al suelo.

En este mismo ensayo se vio que el clomazone se degrada principalmente a través de procesos microbianos, esto quedo demostrado al comparar la degradación ocurrida en el suelo esterilizado en autoclave con otro que se incubó a 30 °C previo a la aplicación de clomazone. Siendo la degradación en el suelo esterilizado menor que en el suelo incubado previamente, esta menor degradación se observó bajo las dos condiciones simuladas (anaeróbica y aeróbica).
2.2.4.2 Degradación por luz

Según WSSA (2007) las pérdidas de clomazone en el suelo por fotolisis son más bajas que las ocurridas por degradación microbiana.

TenBrook y Tjeerdema (2006) no observaron degradación por luz del sol en la solución acuosa del suelo, y no encontraron reportes de fotolisis de clomazone en la literatura.

2.2.5 Persistencia en el suelo

La concentración de herbicida en la solución del suelo es principalmente dependiente de la disolución en la fase líquida, de la adsorción en los componentes del suelo, de la lixiviación, y de la degradación (Gaillardon et al., citados por Lee et al., 2004).

Para Mervosh et al. (1995b) la influencia de la textura del suelo sobre la actividad del clomazone se vincula con las reacciones de adsorción del suelo, mostrando una fuerte afinidad por la superficie de las arcillas y de la materia orgánica. En el estudio de clomazone llevado a cabo por Loux et al., citados por Cumming et al. (2002) este herbicida persistió más en el vertisol, como consecuencia de las condiciones de campo seco y por la mayor afinidad documentada de adsorción a la esmectita.

En el estudio llevado a cabo por Gunasekara et al. (2009) la mayor adsorción se observó a las concentraciones de clomazone más bajas en comparación con las concentraciones más altas en los suelos estudiados; en contraposición la mayor desorción se apreció en las concentraciones más altas indicando la existencia de una mayor histéresis a concentraciones más bajas del herbicida.

Estos autores determinaron que la fracción del carbono que contribuye más con la adsorción, es la fracción alifática con un 65 % del clomazone adsorbido por los ácidos húmicos de los suelos estudiados. También encontraron que la afinidad y la capacidad de sorción son mayores en los
ácidos húmicos, por lo que el clomazone presenta dificultad en el proceso de desorción en suelos con alta materia orgánica.

En el estudio llevado a cabo por Mervosh et al. (1995a) aplicando 1120 g ha\(^{-1}\), el clomazone persistió por más de 84 días en un suelo franco arcillo-limoso con 2,6% de c. org., encontrándose en el suelo al final del estudio más de la mitad del clomazone aplicado.

El clomazone tuvo una persistencia moderada en los suelos franco y franco arcillosos, con una vida media de 5 a 29 días y un promedio de 19 días en el experimento de campo, mientras que el promedio en el laboratorio fue de 34 días (Kirksey et al., 1996). En un trabajo realizado por Gallaher y Mueller, citados por Noldin et al. (2001) durante 2 años y bajo diferentes condiciones ambientales, reportaron que la vida media fue de 55 días para este herbicida.

La vida media del clomazone en el suelo fue de 24 días, variando con las condiciones del mismo. Ésta fue de 16 días en un suelo franco arenoso y de 36 días en un suelo franco limoso. La persistencia de este herbicida es más baja en los suelos franco arenosos que en los suelos franco limosos o franco arcillosos (WSSA, 2007).

2.2.6 Persistencia en el agua

En los años 1996 y 1997 fueron evaluadas las formulaciones de clomazone 500 CE (concentrado emulsionable) y 360 CS (concentrado soluble) a una dosis de 500 g ia ha\(^{-1}\) que se detectaron en el agua de riego hasta 32 y 24 días después de la aplicación, respectivamente. Estos resultados sugieren que 3 o 4 semanas después de la aplicación con las formulaciones CE y CS del herbicida, el agua debe mantenerse dentro de los cuadros, con el fin de minimizar el riesgo de arrastrar el herbicida fuera del cultivo y reducir la contaminación de las aguas superficiales (Noldin et al., 2001).

En Uruguay se realizó un ensayo sobre un suelo franco con 1,28% de c. org., en el que se determinaron las concentraciones de clomazone en el agua desde el momento de la inundación hasta los 75 días después de la misma para dos manejos del riego (temprano: inundado 15 días después de la emergencia y referencia: inundado 30 días después de la emergencia). Se encontraron
residuos de clomazone por debajo del límite aceptado para las aguas superficiales (3ppb) a partir de los 38 y 44 días post aplicación para el manejo temprano y referencia, respectivamente (Cantou et al., 2010).

2.2.7 Control de malezas por el clomazone

El clomazone es un herbicida selectivo de suelo, usado en pimiento (Capsicum annuum L.), calabaza (Cucurbita pepo L.), soja (Glycine max), algodón, tabaco (Nicotiana tabacum L.) y arveja (Pisum sativum L.), para controlar muchas gramíneas anuales y malezas de hoja ancha (Blackshaw y Esaú, Jordan et al., Langton et al., Westburg et al., citados por Culpepper et al., 2001).

El herbicida clomazone es ampliamente utilizado debido a su bajo costo y efectividad. Generalmente se aplica preemergente en el arroz y controla Echinochloa spp., Leptochloa spp. y Brachiaria platyphylla, sin embargo puede provocarle albinismo a las plantas de arroz (Duke y Paul, citados por O´Barr et al., 2007).

Neary y Majek, citados por Cavero et al. (2001) informaron un buen control de Portulaca oleracea a la menor dosis de clomazone estudiada (280 g ha⁻¹). En un ensayo de Cavero et al. (2001) la dosis de 180 g ha⁻¹ controló más del 90% de P. oleracea, más del 96% de Amaranthus retroflexus, un 75% de Solanum physalifolium, y un control total de Convolvulus arvensis y Verónica hederifolia.

Las aplicaciones de clomazone en preemergencia controlaron más del 95 % de Sida spinosa, más del 88% de Ambrosia artemisiifolia y menos del 5% de Amaranthus palmeri (Troxler et al., 2002).

El clomazone actúa sobre muchos pastos anual, pero tiene poca actividad en Cyperus esculentus L., Cyperus iria L., y Sesbania herbácea (Zhang et al., 2005).

El clomazone aplicado a 670 g ha⁻¹ fue inefectivo en el control de Leersia oryzoides, a las 4 semanas del tratamiento se controló solo un 24 % de
la maleza, reduciendo un 20% la altura y un 44% la materia seca de la parte aérea, con respecto a las plantas de *Leersia* no tratadas (Norsworthy et al., 2009).

2.2.8 **Mezclas con clomazone**

La mezcla de herbicidas puede producir importantes efectos sinérgicos y antagónicos (Blouin et al., citados por Webster et al., 2006).

Vencill, citado por Soltani et al. (2004) reportaron que el clomazone aplicado en combinación con imazetapir puede controlar *Amaranthus retroflexus*, *Polygonum* spp., solanáceas anuales, *Polygonum Polygonum L.* y *Brassica kaber*; además el clomazone en combinación con S-metolaclor controla *Setaria* spp., *D. sanguinalis*, *Echinochloa* spp. y *Panicum capillare*.

En un estudio realizado por Webster et al. (2006) se utilizaron 2 herbicidas para mezclar con clomazone, halosulfuron y bensulfuron. En el caso de las mezclas se observaron menores daños en los cultivares Bengal, Cocodrie y Pirogue comparado con el daño provocado por las aplicaciones de clomazone solo, concluyendo que estos 2 herbicidas tienen un efecto protector. Este efecto a partir del bensulfuron y halosulfurón puede demorar más de 21 días para expresarse plenamente, debido al mecanismo y a la lenta actividad de estos herbicidas.

En un ensayo realizado en Uruguay comparando diferentes mezclas de postemergencia temprana de clomazone con quinclorac, bispiribac, propanil y clefoxidim, encontraron diferencias en el control de capín a favor de las mezclas clomazone + bispiribac y clomazone + clefoxidim (Deambrosi y Saldain, 2009).

2.2.9 **Métodos de aplicación y dosis**

El clomazone se ha evaluado sobre dosis y momentos de aplicación diferentes, que van desde la presiembra incorporada a la postemergencia para el control de malezas (Jordan y Kendig, Mitchell y Gage, Webster et al., citados por Scherder et al., 2004).
Como el clomazone es un herbicida residual puede aplicarse solo, en preemergencia (PRE) o preemergencia tardío (DPRE) y también puede ser aplicado en mezcla de tanque con otros herbicidas de postemergencia (Mitchell y Gage, citados por Zhang et al., 2005).

Talbert et al., citados por Zhang et al. (2004) reportaron una decoloración en el arroz del 3, 18, y 60% a los 7 días después del tratamiento cuando se aplicó clomazone a 450 g ha$^{-1}$ en preemergencia (PRE), preemergencia tardía (DPRE), y presiembra incorporado (PPI), respectivamente.

En este estudio el control de capín a los 14 días después de la siembra de arroz con clomazone fue de 89 a 95% para el rango de dosis de 220 - 1120 g ha$^{-1}$, observándose el menor control con la dosis más baja. En este mismo momento el albinismo del arroz encontrado con aplicaciones PPI y DPRE de clomazone fue de 18 y 20% respectivamente, lo cual fue mayor que el 10% de albinismo causado por el clomazone aplicado PRE. A los 49 días de la siembra, un mayor control de capín se observó con las 3 dosis más altas (670; 900 y 1120 g ha$^{-1}$), mientras que el albinismo observado en esta etapa del ciclo para los 3 momentos de aplicación fue sólo del 2 al 6%, siguiendo la misma tendencia que a los 14 días (Zhang et al., 2005).

Estos mismos autores observaron que el mayor albinismo de las plantas de arroz en la etapa temprana, no resultó en pérdida de rendimiento y que las dosis más altas aplicadas en preemergencia tardía aumentaron el rendimiento de grano a través del mejor control de las malezas.

Según Flower (2001) la dosis de 420 g ha$^{-1}$ de clomazone aplicada en tabaco, disminuyó la materia seca de malezas en un 98% con respecto al testigo sin tratar, mientras que el clomazone a 280 g ha$^{-1}$ disminuyó la materia seca de malezas gramíneas en un 75%, y esto no se consideró adecuado. Menos malezas aparecieron con aplicaciones de clomazone a 940 g ha$^{-1}$ en comparación con las dosis más bajas.

La aplicación preemergente de clomazone a 340 g ha$^{-1}$ en arroz sembrado en Texas en marzo, abril o mayo en dos suelos arenosos (0,44 y 0,49% de c. org. y húmedo a la siembra) y en otro franco arcillo limoso (0,77% de c. org. y con baño para nacer), optimizó el control de *Echinochloa* spp. y de
B. platyphylla, maximizando el rendimiento, mientras que el daño en el cultivo fue mínimo (O’Barr et al., 2007).

2.2.10 Residualidad en el suelo

La disponibilidad de clomazone en la solución del suelo varía a lo largo del tiempo entre los suelos. Por lo tanto, la estimación de la fitotoxicidad no puede basarse exclusivamente en la concentración total en el suelo. Es importante destacar que en suelos arenosos y llimo arcillosos, incluso pequeñas cantidades de residuo de clomazone puede provocar efectos fitotóxicos después de la aplicación, mientras que en suelos arcillosos los residuos de varios años de aplicación de clomazone parecen no estar disponibles en la solución. En períodos de rotación corta y condiciones de campo seco en suelos de textura liviana, es esperable que exista daño en las especies sensibles por la aplicación del clomazone (Cumming et al., 2002).

Ahrens y Fürst, Gunsolus et al., citados por Cumming et al. (2002) encontraron en Estados Unidos daños en los cultivos de alfalfa (Medicago sativa L.), trigo (Triticum aestivum L.) y avena (Avena sativa L.) un año después de la aplicación del clomazone.

2.2.11 Importancia de la humedad del suelo

Las variaciones de humedad del suelo afectan la disponibilidad de los herbicidas (Dao y Lavy, Green y Obien, Moyer, citados por Lee et al., 2004).

En los cuatro suelos estudiados por Lee et al. (2004) el clomazone total disponible para la planta se correlacionó positivamente con el contenido de agua del suelo, demostrándose que al aplicarse clomazone en suelos con mayor contenido de humedad existen más posibilidades de encontrarse mayor albinismo en el arroz. Esta mayor disponibilidad fue consecuencia de un menor Kd al aumentar la humedad del suelo.

Según Mudge et al. (2005a) con las aplicaciones de clomazone realizadas con dosis entre 840 y 2200 g ha1, el rendimiento de arroz se redujo cuando el suelo estaba mojado aproximadamente 1 semana después de la
siembra y de la aplicación del herbicida. Esta disminución pudo ser consecuencia de las condiciones de humedad del suelo (saturado de 10 a 14 días después de la siembra y de la aplicación de clomazone), por provocar una pobre recuperación de las plántulas de arroz a los daños causados por este herbicida (Bollich et al., 2000).

Cuanto mayor es la humedad del suelo, mayor es la absorción por la planta de los herbicidas, lo que resultó en un aumento en los daños a las plantas de fríjol blanco (Soltani et al., 2004). Se reportaron aumentos similares en los daños a este cultivo cuando se registró una lluvia torrencial inmediatamente después de las aplicaciones del herbicida (O'Sullivan et al., Rowe y Pender, citados por Soltani et al., 2004).

2.2.12 Selectividad

De ocho experimentos conducidos por Bollich et al. (2000) en Louisiana en los años 1996 y 1997, solamente se detectaron reducciones en el rendimiento en dos de ellos. En Crowley con el arroz sembrado en seco en un suelo limoso con 0,64 % de c. org., las dosis de 280 y 560 g ha⁻¹ de clomazone no afectaron el rendimiento de grano, mientras que las dosis de 840 a 2200 g ha⁻¹ disminuyeron el rendimiento. En otro sitio denominado Oak Grove, el arroz fue sembrado en agua sobre un suelo limo arcilloso con 1,45% de c. org. siendo el rendimiento disminuido significativamente a las dosis de 1700 y 2200 g ha⁻¹.

En cinco de los ocho experimentos de este mismo trabajo, las dosis de 840 g ha⁻¹ o superiores de clomazone aplicado en preemergencia retrasaron la emergencia de las panojas de arroz entre 2 y 8 días, mientras que las dosis más bajas no la afectaron a pesar de presentar 15% o menos de albinismo.

Estos mismos autores observaron que a medida que se incrementaba la dosis del herbicida, el albinismo que presentaban las plantas de arroz aumentaba. Presentando entre 43 y 89% de albinismo cuando se aplicó clomazone a 1700 o 2200 g ha⁻¹, respectivamente.

Scherder et al. (2004) trabajaron en tolerancia al clomazone durante 2 años usando 340 y 670 g ha⁻¹ en suelos limosos (75 a 82% de la fracción limo) con 0,58% de c. org.. Ellos apreciaron que el albinismo de principios de ciclo no

El albinismo observado en este trabajo a los 14 días de la emergencia fue de 1 a 21% en el año 1999 y de 3 a 40% en el 2000. Todos los cultivos presentaron menos de 13% de albinismo en 1999 y menos de 8% en el 2000 a los 28 días de la emergencia cuando se promedió sobre las dosis de herbicida.

El clomazone generalmente causa menos albinismo de arroz cuando es aplicado en un suelo arcilloso que en un suelo franco limosos (Jordan et al., Mitchell y Gage, citados por Scherder et al., 2004).

Zhang et al. (2004) estudiaron en Louisiana la tolerancia al clomazone de nueve cultivos de arroz en los años 2000, 2001 y 2002 a una única dosis de 1120 grs. A los 34 días del tratamiento la altura de la planta se redujo en todas los cultivares excepto en “Drew” en comparación con la planta sin tratar (limpieza manual). El número de plantas también se redujo en tres de los nueve cultivos estudiados. Ellos observaron que la mayoría de los cultivos tienen la capacidad de recuperarse de las lesiones iniciales y mantener su rendimiento de grano potencial, sin embargo los resultados también confirman la existencia de diferentes tolerancias al clomazone entre los cultivos de arroz.

Según Duke et al., citados por Zhang et al. (2004) esta inhibición del crecimiento que se reflejó en la reducción de la altura de la planta, fue causada probablemente por la interferencia del clomazone en el desarrollo de los cloroplastos, carotenoides y con la síntesis de clorofila.

Mudge et al. (2005a) realizaron un ensayo de selectividad en Crowley en un suelo de textura limosa con 0.81% de c. org., sembrando el arroz en agua. Al aplicar clomazone a 896 g ha⁻¹ a los siete días después del estado de enraizamiento impregnado en los gránulos de urea sobre los cultivos estudiados (Ahrent, Cherie, Cocodrie, Cypress, Francis, Wells, Bengal y Pirogue), ellos encontraron menor número de macollos m⁻² a los 14 días después de la aplicación. En promedio el número de macollos para los cultivos tratados fue de 150, mientras que los testigos lograron 310.
En este mismo trabajo observaron que los cultivares de arroz “Cypress”, “Francis”, “Wells”, y “Bengal” a los 14 días del tratamiento, dieron lugar a plantas tratadas más bajas en comparación con las respectivas plantas no tratadas.

Estos mismos autores basándose en los datos del albinismo foliar, llegaron a la conclusión que los cultivares de grano largo son más tolerantes al clomazone que las de grano medio o de grano corto. Los daños mayores se observaron en el cultivar de grano corto (Pirogue) a los 7 y 14 días del tratamiento (30% de albinismo), que se tradujo en una reducción del rendimiento.

Mudge et al. (2005b) realizaron una siembra en agua de arroz y experimentaron con aplicaciones de clomazone a 448 g ha⁻¹ solo o en mezcla con bensulfuron y/o halosulfuron impregnados en la urea, detectaron que la altura de las plantas a los 14 días después de la aplicación fueron menores en las mezclas que cuando se aplicó solo. Sin embargo, la altura de las plantas a la cosecha fue similar para todos los tratamientos evaluados.

Ellos observaron que a los 21 días del enraizamiento, el albinismo foliar en todos los tratamientos se redujo en comparación con lo observado a los siete días, indicando una recuperación de los daños causados por el clomazone.

Zhang et al. (2005) observaron en tres años de estudio y en dos suelos diferentes que con aplicaciones de clomazone a 670, 900 y 1120 g ha⁻¹ se lograron mayores rendimientos de arroz y mayor albinismo en comparación con la dosis mas baja de 220 g ha⁻¹. Estos datos indicaron que el mayor albinismo no se tradujo en un menor rendimiento, sino que el mejor control de malezas obtenido con las dosis altas de clomazone podía contribuir con un mayor rendimiento.

Estos mismos autores identificaron a los 42 días del tratamiento menor albinismo que a los 14 días del tratamiento, en todo el rango de dosis estudiado, lo que indicó que todos los cultivares se recuperaron de los primeros daños causados por el clomazone.
3. MATERIALES Y MÉTODOS

3.1 LOCALIZACIÓN

El estudio fue llevado a cabo en la “Unidad Experimental Paso de la Laguna” (U.E.P.L.), de la “Estación Experimental del Este”, INIA Treinta y Tres, durante el año agrícola 2009-2010. Dicha estación se encuentra ubicada a 28 Km. hacia el este de Treinta y Tres, en la 11° sección policial de dicho departamento. Las coordenadas planas de este lugar son 33° 14´ latitud sur, 54° 22´ longitud oeste y la altitud de 25 m sobre el nivel del mar.

3.2 SUELO

El experimento fue realizado sobre un Solod Melánico de la unidad de mapeo “La Charqueada” según la clasificación de la carta de reconocimientos de suelos (URUGUAY. MAP. DSF, 1979).

3.3 CLIMA

Los datos de precipitaciones y temperatura para la zafra 2009-10 así como también la serie histórica corresponden a la estación meteorológica ubicada en la Unidad Experimental Paso La Laguna (UEPL).
Figura No. 2: Evolución de las precipitaciones por década para la serie histórica 1972-2010 y para el período octubre-abril 2009-2010. UEPL 2009-10

Figura No. 3: Evolución de la temperatura media por década para la serie histórica 1972-2010 y para el período octubre-abril 2009-2010. UEPL 2009-10
3.4 EXPERIMENTO

Se llevó a cabo un experimento en donde se evaluó el control de capín (Echinochloa spp.) y el rendimiento del cultivo debido al efecto de distintos tratamientos herbicidas basados en la aplicación de clomazone aplicado en preemergencia interaccionados con tres momentos del baño referidos a la fecha de la aplicación del preemergente.

La fuente de clomazone fue Command CE (480 g ia l⁻¹), mientras que la de propanil fue una formulación genérica (480 g ia l⁻¹).

La unidad experimental fue la parcela, siendo esta de 2,4 m. de ancho por 10 m. de largo.

3.5 DISEÑO EXPERIMENTAL

Se empleó un arreglo factorial entre los tratamientos herbicidas y los momentos del baño, quedando 12 tratamientos de la combinación de ambos. Éstos se dispusieron con un diseño experimental en bloques completos al azar con cuatro repeticiones.

3.6 TRATAMIENTOS

Los tratamientos herbicidas estudiados fueron: 0 (testigo), 480 y 864 g ha⁻¹ de clomazone aplicado en preemergencia más otro tratamiento herbicida conformado por 480 g ha⁻¹ de clomazone preemergente seguido de 1920 g ha⁻¹ de propanil asperjado en postemergencia temprana (Cuadro 3).

Cada una de estos tratamientos herbicidas se interaccionaron con tres momentos de realización del baño determinados según la fecha de aplicación del preemergente:
A- sin ningún baño
B-baño tres días antes de la aplicación de clomazone
C-baño siete días después de la aplicación de clomazone
Cuadro No. 3: Tratamientos estudiados UEPL, 2009-10

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Momento del baño</th>
<th>Tratamiento herbicida (g ha⁻¹)</th>
<th>Forma de aplicación</th>
<th>Fecha de aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>480</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>480</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>480</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>480 // 1920</td>
<td>Pre // Post</td>
<td>20/11 // 16/12/09</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>480 // 1920</td>
<td>Pre // Post</td>
<td>20/11 // 16/12/09</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>480 // 1920</td>
<td>Pre // Post</td>
<td>20/11 // 16/12/09</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>864</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>864</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>864</td>
<td>Pre</td>
<td>20/11/09</td>
</tr>
</tbody>
</table>

//: seguido por; Pre: preemergente; Post: postemergente; A: sin baño; B: baño 3 días antes de aplicación de clomazone; C: baño 7 días después de aplicación de clomazone.

3.7 MANEJO

3.7.1 Laboreo

La chacra donde se realizó el experimento tenía 3 años de descanso (sin arroz) con una historia arrocera de más de 10 años de manera discontinua.

El laboreo de verano constó de dos pasadas de rastras más una de landplane en el año 2009, siendo en el invierno pastoreado con ovinos. El 14/09/2009 se aplicó 3 lts ha⁻¹ de glifosato (Roundup Full) para iniciar el barbecho químico.

El 13/11/2009 se preparó la sementera con dos pasadas de rastra (excéntrica), dos de landplane y por último una pasada de rolo compactador.
Luego de la siembra se procedió a realizar las taipas y auxiliares quedando pronto para realizar el manejo del baño previsto.

3.7.2 Siembra

El día previo a la siembra de arroz se sembraron al voleo todas las parcelas con 300 semillas viables de capín \(\text{m}^{-2}\), incorporándose al suelo con una rastra fina (liviana con poca traba).

El 13/11/2009 se sembró el experimento con una sembradora SEMEATO de 13 líneas para siembra directa, con una distancia entre surcos de 17 cm. Por parcela se sembraron 13 líneas de 10 m de largo del cultivar INIA Olimar con la densidad especificada en el siguiente cuadro:

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Densidad (Kg ha(^{-1}))</th>
<th>PMG</th>
<th>Germinación (%)</th>
<th>Semillas viables m(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olimar</td>
<td>182</td>
<td>25,8</td>
<td>92</td>
<td>650</td>
</tr>
</tbody>
</table>

PMG: peso de mil granos

3.7.3 Fertilización

Se realizó una única aplicación basal de fósforo, y el nitrógeno se fraccionó en 3 momentos (siembra, macollaje y primordio).

A la siembra se fertilizó con 140 Kg ha\(^{-1}\) de fosfato di amónico (18-46-0). Las otras dos aplicaciones de nitrógeno fueron al voleo con urea (46-0-0), siendo una de 50 Kg ha\(^{-1}\) al macollaje el 18/12/2009 y la otra de 50 Kg ha\(^{-1}\) en primordio el 30/12/2009. Luego de la aplicación en macollaje se procedió a inundar el cultivo definitivamente.
3.7.4 Taipas y auxiliares

Las taipas se realizaron de manera que cada parcela del experimento quedó dentro de una parcela de riego, pudiendo de esta manera efectuar baños, drenaje e inundación de manera independiente entre las parcelas.

3.7.5 Manejo del herbicida

Cuadro No. 5: Condiciones de humedad del suelo de las parcelas testigos del día de la aplicación preemergente de clomazone. UEPL, 2009-10

<table>
<thead>
<tr>
<th>Parcela No.</th>
<th>Bloque No.</th>
<th>Momento del baño</th>
<th>Profundidad cm.</th>
<th>g agua Kg⁻¹ suelo seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A</td>
<td>0-5</td>
<td>254</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>B</td>
<td>0-5</td>
<td>292</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>C</td>
<td>0-5</td>
<td>283</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>B</td>
<td>0-5</td>
<td>293</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>A</td>
<td>0-5</td>
<td>309</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>C</td>
<td>0-5</td>
<td>296</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>A</td>
<td>0-5</td>
<td>295</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>C</td>
<td>0-5</td>
<td>291</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>B</td>
<td>0-5</td>
<td>312</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>A</td>
<td>0-5</td>
<td>319</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>B</td>
<td>0-5</td>
<td>293</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>C</td>
<td>0-5</td>
<td>331</td>
</tr>
</tbody>
</table>

A: sin baño; B: baño 3 días antes de aplicación de clomazone; C: baño 7 días después de aplicación de clomazone

Las mediciones de humedad mostradas en el cuadro No. 5 fueron hechas el mismo día de la aplicación del clomazone preemergente, por ese motivo se tomaron las humedades de las parcelas testigo ya que no presentaban aplicación del herbicida. Teóricamente éste tipo de suelo estaría saturado aproximadamente con 250 a 300 gramos de agua kg⁻¹ de suelo seco.

Las aplicaciones preemergentes se realizaron el 20/11/2009 (7 días pos-siembra) y las aplicaciones postemergentes el 16/12/2009 (24 días de emergencia).
Todas las aplicaciones se realizaron usando un equipo de mochila con sistema de presión por dióxido de carbono con 5 boquillas a 0,45 m. de distancia entre ellas; se utilizaron picos anti-deriva DG8002 quedando con un ancho efectivo de la barra de 2,25 m. Se aplicó a una presión de 32 psi, la altura de aplicación fue con la barra a 60 cm aproximadamente del suelo. El volumen de aplicación fue de 180 lts/ha de solución para todos los tratamientos.

3.7.6 Manejo del baño

Se realizaron baños en 3 momentos en el experimento. En uno no se realizó el baño, mientras que los otros dos manejos consistieron en dar un baño tres días antes de la aplicación del preemergente (17/11/2009) y el otro un baño siete días después de la aplicación del preemergente (27/11/2009). Los baños fueron realizados ingresando el agua hasta cubrir en su totalidad la superficie de la parcela, retirando el agua posteriormente abriendo los drenajes independientes de cada parcela.

La inundación definitiva del cultivo fue realizada el mismo día de la aplicación de urea en macollaje (18/12/2009) y se mantuvo hasta madurez fisiológica (25/03/2010), drenándose totalmente la parcela el día de la cosecha.

3.7.7 Cosecha

Toda la cosecha fue realizada el 07/04/2010 a 137 días de la emergencia de forma manual, procediendo luego a la trilla en la chacra con una trilladora estacionaria.

La preparación de la parcela para la cosecha consistió en retirar el agua y se procedió posteriormente a hacer el desborde de la misma, dejando los 6 surcos centrales y quitando 1 m. de cabecera de cada lado, estableciendo así el área de cosecha.

Antes del corte se estimó el área de daño por rata y de la zona dañada por los muestreos de los componentes del rendimiento para corregir el mismo. También en esta instancia se procedió a hacer la lectura de control del capín por apreciación visual del efecto de los tratamientos estudiados.
3.8 MEDICIONES REALIZADAS

3.8.1 Análisis de suelo

Se tomaron varias submuestras de suelo de forma aleatoria en el área efectiva de siembra del experimento, con el objetivo de caracterizar el suelo y ayudar a interpretar los resultados. La muestra fue analizada en el “Laboratorio de Análisis de Suelos, Plantas y Agua” INIA La Estanzuela.

Los resultados del análisis del suelo son los siguientes:

Cuadro No. 6: Resultados de análisis de suelo. UEPL, 2009-10

<table>
<thead>
<tr>
<th>pH (H₂O)</th>
<th>C. Org. (%)</th>
<th>Bray I (µg P/g)</th>
<th>Cítrico (µg P/g)</th>
<th>K (meq/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0</td>
<td>1,14</td>
<td>4,6</td>
<td>6,6</td>
<td>0,19</td>
</tr>
</tbody>
</table>

M.O. (%) = C org.(%)*1,724

3.8.2 Conteo de plantas de arroz

El 11/12/2009, a los 19 días de la emergencia del cultivo se contaron las plantas de arroz viables en 1 m. lineal de surco, sin tomarse en cuenta las plantas dañadas que no tenían posibilidad de sobrevivir (albinismo total y que no emitían hojas nuevas verdes). Se registraron 3 conteos por parcela en los surcos centrales para luego calcular la media por metro lineal y así poder estimar la implantación lograda en cada una de las parcelas.

En promedio la implantación fue de 310 pl m⁻² lo que equivale a un 47,6% de las semillas viables sembradas.

3.8.3 Altura de las plantas de arroz a macollaje

El 16/12/2009 se realizó la medición de la altura de plantas de arroz a los 24 días de la emergencia del cultivo, para ésta se realizaron 10 medidas por
parcela al azar las cuales se tomaron con una regla T graduada. Con estas mediciones se calcularon las alturas por planta promedio de cada tratamiento.

3.8.4 **Conteo de tallos de arroz**

Este conteo fue realizado el 30/12/2009 a los 38 días de la emergencia y se tomaron los mismos 3 metros lineales seleccionados para el conteo de plantas de arroz, promediándose luego los 3 conteos de tallos de cada metro lineal para calcular el número de tallos m\(^{-2}\).

3.8.5 **Determinación de biomasa e índice de cosecha**

Se realizaron 3 mediciones de biomasa durante el transcurso del cultivo y con la última muestra se calculó el índice de cosecha de cada parcela.

La primera fue realizada a los 46 días de la emergencia (7/01/2010), se sacaron 2 muestras de cada parcela de 50 cm. cada una y posteriormente se juntaron para colocarlas por 48 horas en una estufa a 105 °C para secar las muestras y calcular los kg ha\(^{-1}\) de biomasa. A las parcelas testigo se les separó el capín para calcular la biomasa del mismo.

La segunda se realizó el 9/02/2010 a los 79 días de la emergencia (aproximadamente 50% de panojas florecidas), usándose la misma metodología que para el primer muestreo.

La última fue realizada el 25/03/2010 a los 123 días de emergencia en madurez fisiológica. Se sacaron 2 muestras de 50 cm. de cada parcela y se colocaron en la estufa a 105 °C por 72 horas, previo al secado se separó la paja del grano. Luego de extraída la muestra de la estufa se pesó el grano y la paja, y se calculó el índice de cosecha por parcela.
3.8.6 Lectura a inicio de floración

En la misma se determinó la fecha de cada tratamiento en la cual el cultivo se presentaba con un 10% de anteras visibles. Para el análisis estadístico se pasó la fecha a número, tomando como base el 1º de febrero como el día uno.

Esta determinación se realizó para ver si existieron atrasos o adelantos en la floración de cada tratamiento y explicar posibles cambios en el rendimiento y calidad, asociada con la información climática recabada durante el ciclo del cultivo.

3.8.7 Lectura de control del capín a la cosecha

Se utilizó una escala subjetiva para determinar el grado de infestación de capín de la parcela por apreciación visual comparado con el testigo. Esta escala va desde 0 que equivale a sin control, 1-2 control pobre, 2-3 control regular a bueno, 3-4 control bueno a muy bueno, 4-5 control muy bueno a excelente, tomándose grados intermedios de infestación con intervalos de 0,1.

3.8.8 Altura del arroz a la cosecha

Esta medición se realizó el 07/04/2010 tomándose en 6 plantas por parcela elegidas al azar. Esta fue realizada con una regla T graduada, midiéndose la planta de arroz desde la base hasta la punta de la panoja, calculándose la altura por parcela.

3.8.9 Rendimiento en grano

Para determinar el rendimiento de chacra luego de la cosecha de los 6 surcos centrales (8,16 m²) de cada parcela se trillaron las plantas y se pesó con una balanza tipo Romana en la misma chacra. Se calculó posteriormente el rendimiento por hectárea de chacra, extrayendo de lo cosechado una muestra para determinar el contenido de humedad, peso de mil granos y análisis de calidad industrial.
3.8.10 **Humedad en el grano**

De la muestra tomada en la chacra, se hicieron 2 lecturas de humedad de cada parcela. Se utilizó un humedímetro digital DICKEY-john GAC 2100 para luego promediar y tener el contenido de humedad en el grano por parcela.

3.8.11 **Componentes del rendimiento**

Para estas mediciones se tomaron dos muestras de 30 cm de surco cada una, del área de cosecha. Se determinó: número panojas m$^{-2}$, granos panoja$^{-1}$, granos llenos panoja$^{-1}$, granos chuzos panoja$^{-1}$ y granos semillenos panoja$^{-1}$.

De las dos muestras se contaron el número total de panojas, calculando posteriormente las panojas por metro cuadrado.

Del total de panojas de las muestras se extrajeron 20 panojas al azar por parcela, posteriormente se trillaron y se contaron en un contador digital láser de granos (PFEUFFER) previa separación de granos llenos, semillenos y chuzos. Esta clasificación se realizó con un SEED SORTER que separa por aspiración del aire diferentes pesos de grano.

También se calculó el peso de mil granos de cada parcela, para este cálculo se utilizó la muestra de arroz de chacra pero con un secado previo para llevar todas las humedades de los granos a 13%. Se contaron 3000 granos y se los pesó con una balanza de precisión, dividiendo ese peso entre 3 para obtener el peso de mil granos.

3.8.12 **Rendimiento de grano seco**

Este rendimiento se obtuvo corrigiendo el rendimiento de chacra por humedad y daño de rata más daños por muestreo. La corrección por humedad se realizó tomando en cuenta la diferencia entre la humedad de chacra de cada parcela y 13% de humedad que es la que presenta el grano cuando se seca. La
corrección por daños se realizó descontándole al área de cosecha (8.16 m\(^2\)) los m\(^2\) de daño de cada parcela.

3.8.13 Calidad industrial

Las variables blanco total, entero, yeso y mancha fueron determinadas en una submuestra de arroz seco tomada de la muestra de chacra, éstas son expresadas en %.

Se pesaron 100 grs. de arroz cáscara, se descascararon, se pulieron usando un tiempo de 70 segundos en un molino satake con una piedra esmeril No. 36, separándose posteriormente el arroz quebrado del entero.

Para el cálculo del blanco total se pesó el grano entero y quebrado pulido, tomándose a éste como el porcentaje sobre los 100 grs. cáscara. La misma metodología se utilizó para el cálculo de porcentaje de entero. Mientras que el porcentaje de yeso y mancha se determinaron usando al blanco total como base.

3.9 ANÁLISIS ESTADISTICO

El experimento se planteó como un arreglo factorial entre los cuatro tratamientos herbicidas y los tres momentos de realización del baño.

- Diseño: DBCA, 4 repeticiones, 12 tratamientos.
- Factores: - tratamientos herbicidas
 - momento del baño

- Niveles para tratamiento herbicida: 0, 480, 480 // 1920, 864 g ha\(^{-1}\)
- Niveles para momento del baño: sin baño, baño tres días antes de aplicación de preemergente, y baño siete días después de aplicación en preemergencia.
- Unidad experimental: la parcela
Las hipótesis planteadas fueron las siguientes:

Ho: Los efectos de los tratamientos son iguales

Ha: Por lo menos alguno de los efectos de los tratamientos es diferente

Para el ANAVA el modelo estadístico fue el siguiente:

$$Y_{ijk}=\mu+T_i+B_j+(TB)_{ij}+\beta_k+\varepsilon_{ijk}$$

$i=1,2,3,4$ (tratamiento herbicida)

$j=1,2,3$ (momento del baño)

$k=1,2,3,4$ (bloque)

$\mu=$ media poblacional

$T_i=$ efecto del i-ésimo nivel de tratamiento herbicida

$B_j=$ efecto del j-ésimo nivel de momento de baño

$(TB)_{ij}=$ efecto de la interacción entre el i-ésimo nivel de tratamiento herbicida y el j-ésimo nivel de momento de baño

$\beta_k=$ efecto del k-ésimo bloque

$\varepsilon_{ijk}=$ error experimental

El análisis estadístico se realizó con el programa SAS (Statistical Analysis System) versión 9.2 en español, mediante el procedimiento Proc MIXED.

En el ANAVA se usaron los contrastes ortogonales para estudiar la significación de la respuesta, tanto lineal como cuadrática empleando solo las dosis de clomazone aplicadas en preemergencia. Como las dosis no eran equidistantes se usó el Proc NLIN para el cálculo de los coeficientes empleados en los contrastes. Luego de obtenida la forma de respuesta, se ajustaron los coeficientes del modelo de regresión significativo usando el Proc GLM (General
Linear Models). Además, para comparar las dosis de 480 g ha$^{-1}$ de clomazone preemergente y la secuencia de 480 g ha$^{-1}$ de clomazone preemergente seguido de 1920 g ha$^{-1}$ de propanil postemergente se realizó el contraste entre ellos.

Luego del rechazo de la hipótesis nula en el análisis de varianza, se utilizó la prueba de Tukey para realizar la separación de las medias de los tratamientos utilizando un error de tipo I al 5 %.

También en este experimento se utilizó el Proc CORR del SAS para calcular las correlaciones entre las variables de interés.

Para las variables porcentaje de yeso y mancha en el grano pulido se analizaron los datos sin transformar y transformados por raíz cuadrada de $x + 0,5$, siendo x igual al dato sin transformar.
4. RESULTADOS Y DISCUSIÓN

Como en el análisis de varianza (ANAVA) no se detectaron efectos significativos debidos a la interacción entre el factor tratamiento herbicida y el factor momento del baño en ninguna de las variables evaluadas, no se presenta la información correspondiente para ninguna de ellas. Por la misma razón tampoco se muestran los resultados del contraste entre la dosis única de 480 g ha⁻¹ de clomazone en preemergencia y la secuencia de 480 g ha⁻¹ de clomazone en preemergencia seguida de 1920 g ha⁻¹ de propanil en postemergencia temprana (ver Anexos No. 1 al 23).

En el caso del factor momento del baño se detectó solamente efecto significativo en dos variables de las medidas, por lo que para el resto de las variables las medias se presentan en los Anexos No. 24 al 28.

Para el contraste especificado anteriormente las medias obtenidas se muestran en los Anexos No. 29 al 33.

Además, el ANAVA de las regresiones ajustadas se presenta al final de la sección Anexos.

4.1 NÚMERO DE PLANTAS

En el ANAVA se encontró diferencia significativa para el factor tratamiento herbicida (p=0,0016), pero no para el factor momento del baño (ver Anexo No. 1). El promedio para esta variable fue de 308 pl m⁻², con un coeficiente de variación (C.V.) de 14,4 %.

Al analizar solo el efecto de las dosis de clomazone, dejando de lado la secuencia con propanil, se detectó un modelo lineal (p=0,0002).

Los coeficientes de la regresión obtenida fueron (ver Anexo No. 35):

\[Y = 344,6239151 - 0,0828294 \times \quad R^2 = 0,297 \quad n = 36 \]
Donde:

Y: No. plantas de arroz m2 a los 19 días de la emergencia

x: dosis de clomazone (g ha$^{-1}$)

Figura No. 4: Efecto de la dosis de clomazone sobre el número de plantas

Con las condiciones meteorológicas particulares para el mes de siembra y de aplicación del herbicida preemergente en este ensayo presentadas en las figuras No. 5 y 6, el número de plantas de arroz presentó una respuesta lineal negativa de 8 plantas por cada 100 g ha$^{-1}$ de aumento en la dosis de clomazone. Sin embargo en otro ensayo (Saldain et al., 2010) realizado en el mismo campo experimental y en el mismo año, pero sembrado con condiciones desfavorables para la emergencia y crecimiento inicial del cultivo, la respuesta encontrada fue cuadrática con un máximo en la dosis de 288 g ha$^{-1}$ de clomazone aplicado en preemergencia. En ambos trabajos se observó que las dosis más altas mostraron el menor número de plantas, siendo la fitotoxicidad una posible explicación por la pérdida en la población. Sin embargo esa caída en el número de plantas no fue igual para los dos trabajos. En el presente trabajo el testigo presentó una media de 338 plantas m$^{-2}$ y para la dosis más alta evaluada fue de 263 plantas, en cambio para el trabajo citado la media para el testigo fue de tan solo 201 planta m$^{-2}$ y para la dosis más alta de 79 plantas, siendo el efecto fitotóxico mayor en este último.
Figura No. 5: Precipitaciones diarias del mes de noviembre.

Figura No. 6: Temperaturas mínimas y máximas diarias del mes de noviembre.
4.2 ALTURA DE LA PLANTA DE ARROZ

4.2.1 Altura a macollaje

El ANAVA mostró efecto significativo para el factor tratamiento herbicida \((p=0,0026)\), pero no para el factor momento del baño (ver Anexo No. 2). La media para esta variable fue de 21,7 cm con un C.V. de 6,6%.

4.2.2 Altura a cosecha

En esta variable el ANAVA constató efectos significativos para los tratamientos herbicidas \((p<,0001)\) y para el momento del baño \((p=0,0495)\) (ver Anexo No. 10). La media de esta variable fue de 92,5 cm con un C.V. de 2,9%.

Para ambas alturas se ajustó un modelo cuadrático para las dosis únicas de clomazone con \(p=0,0307\) y con \(p=0,0016\); respectivamente.

Los coeficientes de las regresiones obtenidas fueron (ver Anexos No. 37 y 39):

Altura a macollaje:
\[Y = 20,36666667 + 0,0061849 x - 0,00000565 x^2 \quad R^2 = 0,105 \quad n = 36 \]

Altura a cosecha:
\[Y = 85,18055556 + 0,02757282 x - 0,00001796 x^2 \quad R^2 = 0,783 \quad n = 36 \]

Donde:

\(Y \): Altura de la planta de arroz en cm
\(x \): dosis de clomazone \((g \text{ ha}^{-1})\)
Figura No. 7: Efecto de la dosis de clomazone en la altura de las plantas de arroz al macollaje y a la cosecha.

Las máximas alturas calculadas con los modelos ajustados para estas variables fueron logradas con 547 g ha⁻¹ a los 24 días de la emergencia y de 768 g ha⁻¹ a cosecha. La diferencia constatada entre las dosis para la obtención de los máximos podría indicar una recuperación de las plantas de arroz. Además, se observa el efecto de la competencia del capín sobre la altura de las plantas, haciéndose más notoria en la altura a cosecha. Las dosis más altas de clomazone provocaron tempranamente albinismo y pérdida de algunas plantas, traduciéndose en una reducción de la altura al macollaje como se observa en la figura No. 7. De acuerdo con Duke et al., citados por Zhang et al. (2004) esta reducción se debería probablemente a la interferencia del clomazone con el desarrollo de los cloroplasto, carotenoides y con la síntesis de clorofila.

Se observa en la figura No. 8 que el momento del baño realizado a los siete días después de la aplicación provocó una disminución significativa en la altura, en comparación con el momento del baño tres días antes de la aplicación del clomazone, teniendo un comportamiento intermedio las parcelas que dependieron exclusivamente del agua de lluvia.
Las medias seguidas por la(s) misma(s) letra(s) no difieren estadísticamente, según Test de Tukey al 5%. 3-: baño 3 días antes de la aplicación del clomazone preemergente, 7+: baño 7 días después de la aplicación del clomazone preemergente, sb: sin baño.

Figura No. 8: Efecto del momento del baño en la altura de las plantas de arroz a la cosecha.

4.3 BIOMASA DE ARROZ

En el ANAVA se detectó efecto significativo para los tratamientos herbicidas en las tres mediciones de biomasa expresada en base seca (p<.0001), (p<.0001), y (p<.0001) realizadas en primordio, floración y cosecha; respectivamente. Sin embargo, no se encontró efecto significativo para el factor momento del baño (ver Anexos No. 3, 5 y 7).

Las medias detectadas fueron 3886, 11431 y 18674 kg. ha\(^{-1}\) con un C.V. de 15,9, 11,5 y 13,2% para la biomasa a primordio, floración y cosecha; respectivamente.

Al analizar solo el efecto de la dosis de clomazone sin tomar en cuenta la secuencia con propanil, se ajustó un modelo cuadrático para biomasa a
primordio, floración y cosecha con \(p=0,0214 \), \(p=0,0003 \) y \(p=0,0043 \); respectivamente.

Los coeficientes de las regresiones obtenidas fueron (ver Anexos No. 41, 43 y 45):

Biomasa a primordio:

\[
Y = 2686,22549 + 4,675049 x - 0,003271 x^2 \quad R^2 = 0,633 \quad n = 36
\]

Biomasa a floración:

\[
Y = 7507,916667 + 16,176929 x - 0,011744 x^2 \quad R^2 = 0,839 \quad n = 36
\]

Biomasa a cosecha:

\[
Y = 11609,31373 + 26,14833 x - 0,01664 x^2 \quad R^2 = 0,849 \quad n = 36
\]

Donde:

\(Y \): Biomasa de arroz a primordio en kg ha\(^{-1}\)

\(x \): dosis de clomazone (g ha\(^{-1}\))
Figura No. 9: Efecto de la dosis de clomazone sobre la biomasa determinada en tres momentos diferentes.

El máximo para estas variables se obtuvo con 715, 689 y 786 g ha\(^{-1}\) para primordio, floración y cosecha, respectivamente. En la última medición de biomasa se observó una reducción mayor en el testigo comparado con las dosis de clomazone, debido al efecto de la interferencia del capín sobre las plantas del cultivo.

4.4 NUMERO DE TALLOS DE ARROZ AL MACOLLAJE

El ANAVA detectó efecto significativo para los tratamientos herbicidas (p<0.0001), no siendo así para el factor momento del baño (ver Anexo No. 4). Esta variable tuvo una media de 735 tallos m\(^{-2}\) con un C.V. de 13,4%.

Se ajustó un modelo cuadrático para el efecto dosis única de clomazone con una p=0,0044.

Los coeficientes de la regresión obtenida fueron (ver Anexo No. 47):
$$Y = 547,0588235 + 0,8613513 \times - 0,0007052 \times^2 \quad R^2 = 0,549 \quad n = 36$$

Donde:

Y: No. de tallos de arroz m$^{-2}$ en macollaje

x: dosis de clomazone (g ha$^{-1}$)

Se obtuvo un máximo para esta variable en 611 g ha$^{-1}$. En la figura No. 10 se observa que las plantas de arroz se recuperaron del efecto fitotóxico de corta duración del clomazone, dado el cambio en la forma de la respuesta en las dos variables al aumentar la dosis de clomazone. Estos datos son consistentes con los informados por Mudge et al. (2005b).

Figura No. 10: Efecto de la dosis de clomazone sobre el número de plantas y el número de tallos de arroz m$^{-2}$.

4.5 FECHA A INICIO DE FLORACIÓN

Para esta variable, medida cuando el 10% de las panojas inician la floración, en el ANAVA se observó diferencias significativas para los tratamientos herbicidas (p<.0001) y para el factor momento del baño (p<.0001) (ver Anexo No. 6). El promedio para esta variable fue de 5 días, tomando como base el 1º de febrero, con un C.V. de 20,5%.
Cuando analizamos solo el efecto de las dosis de clomazone dejando de lado la secuencia con propanil, se ajustó un modelo lineal con $p<0.0001$.

Los coeficientes de la regresión obtenida fueron (ver Anexo No. 48):

$$Y = 3.774590164 + 0.003045310 \times R^2 = 0.37 \quad n = 36$$

Donde:

Y: No. de días al 10% de floración

x: dosis de clomazone (g ha$^{-1}$)

En la figura No. 11 se observa la respuesta encontrada al aumentar la dosis de clomazone, se observó un retraso de 1,5 días por cada 480 g ha$^{-1}$ de aumento en la dosis, encontrándose a la dosis máxima utilizada un retraso de 3 días. Estos resultados concuerdan con lo encontrado por Bollich et al. (2000) en donde se detectaron en cinco de los ocho experimentos realizados, un retraso en la emergencia de la panoja de 2 días cuando se aplicó 840 g ha$^{-1}$ de clomazone.

Figura No. 11: Efecto de la dosis de clomazone sobre los días a inicio de floración.
Como se observa en la figura No. 12 para el momento del baño se detectó un retraso significativo de 1 día en el inicio de la floración cuando se realizó el baño tres días antes de la aplicación de clomazone comparado con las medias de los otros dos momentos.

Las medias seguidas por la(s) misma(s) letra(s) no difieren estadísticamente, según Test de Tukey al 5%. 3-: baño 3 días antes de la aplicación del clomazone preemergente, 7+: baño 7 días después de la aplicación del clomazone preemergente, sb: sin baño.

Figura No. 12: Efecto del momento del baño sobre los días a inicio de floración.

4.6 ÍNDICE DE COSECHA

En el ANAVA se detectó efecto significativo para los distintos tratamientos herbicidas (p=0,0051), no siendo así para el factor momento del baño (ver Anexo No. 8). La media obtenida para esta variable fue de 0,54 con un C.V. de 0,05%.

Se ajustó un modelo cuadrático para el efecto dosis única de clomazone con p=0,0033.
Los coeficientes de la regresión obtenida fueron (ver Anexo No. 50):

\[Y = 0,5141903121 + 0,0001489024 \times - 0,0000001513 \times^2 \quad R^2 = 0,236 \quad n = 36 \]

Donde:

Y: índice de cosecha

x: dosis de clomazone (g ha\(^{-1}\))

Con los coeficientes del modelo ajustado se calculó un máximo a la dosis de 492 g ha\(^{-1}\).

4.7 RENDIMIENTO DE GRANO SECO DE ARROZ

Se constató efecto significativo en el ANAVA debida a los tratamientos herbicidas (p<.0001), pero no hubo efecto significativo para el momento del baño (ver Anexo No. 12). Esta variable tuvo un valor medio de 8,6 tt. ha\(^{-1}\) con un C.V. de 12,9%.
Para esta variable se ajustó un modelo cuadrático con \(p < 0.001 \), al sacar la secuencia de clomazone con propanil del análisis del factor tratamiento herbicida.

Los coeficientes de la regresión obtenida fueron (ver Anexo No. 52):

\[
Y = 3.936100554 + 0.019743076 \times - 0.000014662 \times^2 \quad R^2 = 0.915 \quad n = 36
\]

Donde:

\(Y \): rendimiento de grano en toneladas ha\(^{-1}\)
\(x \): dosis de clomazone (g ha\(^{-1}\))

![Gráfico de regresión con dosis de clomazone vs rendimiento de arroz](Attachment)

Figura No. 14: Efecto de la dosis de clomazone sobre el rendimiento de arroz.

El máximo para la variable rendimiento se obtuvo con una dosis de 673 g ha\(^{-1}\), con dosis mayores a esta se redujo el rendimiento de grano. Resultados similares se observaron en el trabajo de Bollich et al. (2000) en una siembra de arroz en seco, donde se detectaron reducciones del rendimiento con dosis...
mayores o iguales a 840 g ha\(^{-1}\), mientras que cuando se aplicó 560 g ha\(^{-1}\) o menos no se observaron reducciones.

4.8 COMPONENTES DEL RENDIMIENTO

Al realizar el ANAVA se detectaron diferencias significativas debidas al tratamiento herbicida en las variables: panojas m\(^{-2}\) (p<.0001), granos totales panoja\(^{-1}\) (p<.0001), granos llenos panoja\(^{-1}\) (p<.0001) y peso de mil granos (p=0,0057), no encontrándose diferencias en granos chuzos panoja\(^{-1}\) ni en granos semillenos panoja\(^{-1}\) (ver medias en Anexo No. 34). Por otro lado no se observaron diferencias significativas para el factor momento del baño (ver Anexos No. 13, 14, 15, 16, 17 y 18). En el cuadro No. 7 se presentan los valores medios y el coeficiente de variación para las variables mencionadas.

Cuadro No. 7: Valores medios y coeficientes de variación para los componentes del rendimiento.

<table>
<thead>
<tr>
<th>Componentes del rendimiento</th>
<th>panm2</th>
<th>gtp</th>
<th>gllp</th>
<th>gchp</th>
<th>gsllp</th>
<th>pmg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>701</td>
<td>71</td>
<td>60</td>
<td>10,6</td>
<td>0,3</td>
<td>26,9</td>
</tr>
<tr>
<td>C.V.(%)</td>
<td>17,9</td>
<td>16,3</td>
<td>16,9</td>
<td>72,7</td>
<td>72,7</td>
<td>1,7</td>
</tr>
</tbody>
</table>

panm2: panojas m\(^{-2}\); gtp: granos totales panojas\(^{-1}\); gllp: granos llenos panoja\(^{-1}\); gchp: granos chuzos panoja\(^{-1}\); gsllp: granos semillenos panoja\(^{-1}\); pmg: peso de mil granos.

4.8.1 No. de panojas m\(^{-2}\)

Se ajustó un modelo lineal para el efecto dosis de clomazone dejando de lado la secuencia con propanil con p<.0001.

Los coeficientes de la regresión obtenida fueron (ver Anexo No. 53):

\[Y = 536,7379192 + 0,3252767 \times \] \[R^2 = 0,456 \] \[n = 36 \]
Donde:

Y: No. de panojas m$^{-2}$

x: dosis de clomazone (g ha$^{-1}$)

En la figura No. 15 se presenta el ajuste lineal entre el número de panojas m$^{-2}$ y el aumento de la dosis de clomazone, observándose que un aumento de 100 g ha$^{-1}$ en la dosis de clomazone aplicado, resultó en un incremento de 32 panojas m$^{-2}$. Para todos los tratamientos con una dosis única de clomazone, se detectó un número de panojas m$^{-2}$ igual o superior a lo normal para este cultivar (aprox. 500 panojas m$^{-2}$).

Figura No.15: Efecto de la dosis de clomazone sobre el número de panojas m$^{-2}$.

4.8.2 No. de granos totales y llenos panoja$^{-1}$

Para la variable número de granos totales panoja$^{-1}$ se ajustó un modelo lineal para el efecto dosis única de clomazone con $p<0.0001$, mientras que para granos llenos panoja$^{-1}$ el ajuste fue cuadrático con $p=0.0087$.

49
Los coeficientes de las regresiones obtenidas fueron (ver Anexos No. 54 y 56):

No. de granos totales panoja\(^{-1}\):
\[Y = 51,64740437 + 0.03694466 \times R^2 = 0,611 \quad n = 36 \]

No. de granos llenos panoja\(^{-1}\):
\[Y = 36,1125 + 0.08744309 \times -0.0000565 \times x^2 \quad R^2 = 0,765 \quad n = 36 \]

Donde:

\(Y\): No. de granos panoja\(^{-1}\)
\(x\): dosis de clomazone (g ha\(^{-1}\))

Figura No. 16: Efecto de la dosis de clomazone sobre el número de granos totales y llenos panoja\(^{-1}\).
La respuesta a la aplicación de clomazone para la variable granos totales panoja\(^{-1}\) fue lineal, encontrándose que por cada 480 g ha\(^{-1}\) de aumento en la dosis de clomazone esta variable se incrementó en 18 granos. Sin embargo para la variable granos llenos panoja\(^{-1}\) la respuesta fue cuadrática con un máximo en 774 g ha\(^{-1}\) de clomazone, dosis mayores a ésta disminuyen el número de granos llenos pero no el número de granos totales.

4.8.3 Peso de mil granos

Al analizar el efecto de la dosis de clomazone sin tener en cuenta la secuencia, se ajustó un modelo lineal con p=0,0027.

Los coeficientes de la regresión obtenida fueron (ver Anexo No. 57):

\[
Y = 26,45887978 + 0,00078623 \times x \quad R^2 = 0,202 \quad n = 36
\]

Donde:

\(Y\): peso de mil granos (gramos)

\(x\): dosis de clomazone (g ha\(^{-1}\))

En la figura No. 17 se observa el modelo ajustado así como también los valores reales. Se puede apreciar que por cada 480 g ha\(^{-1}\) de aumento en la dosis se incrementó en 0,4 gramos el peso de mil granos.
Figura No. 17: Efecto de la dosis de clomazone sobre el peso de mil granos.

4.9 PORCENTAJE DE ESTERILIDAD

En el ANAVA se detectó diferencia significativa únicamente para los tratamientos herbicidas (ver Anexo No. 19). El porcentaje de esterilidad promedio fue 15,5% con un C.V. de 37,2%.

Se ajustó un modelo cuadrático para el efecto dosis únicas de clomazone con p=0,0031.

Los coeficientes de la regresión obtenida fueron (ver Anexo No. 59):

\[Y = 25,97604791 - 0,04916243 x + 0,00004043 x^2 \quad R^2 = 0,521 \quad n = 36 \]

Donde:

Y: porcentaje de esterilidad
x: dosis de clomazone (g ha\(^{-1}\))

En la figura No. 18 se presenta el gráfico correspondiente al porcentaje de esterilidad, en el cual se puede observar que la mínima esterilidad se obtuvo con una dosis de 608 g ha\(^{-1}\). Se puede inferir al observar el testigo sin clomazone, que la interferencia del capín con el arroz provoca aumentos en la esterilidad, ya que los tratamientos con clomazone presentaron aproximadamente 14% menos de esterilidad.

![Gráfico de porcentaje de esterilidad](image)

Figura No. 18: Efecto de la dosis de clomazone sobre el porcentaje de esterilidad.

4.10 CALIDAD INDUSTRIAL DEL ARROZ

En el ANAVA se detectaron diferencias significativas debidas a los tratamientos herbicidas en las variables blanco total (p<0.0001), grano entero (p<0.0001), yeso (p<0.0001), y mancha (p<0.0001). Por otra parte no se detectaron diferencias debidas al factor momento del baño (ver Anexos No. 20, 21, 22 y 23). A continuación se presentan los valores medios y el C.V. para las variables que conforman la calidad industrial.
Cuadro No. 8: Media y coeficiente de variación para los componentes de la calidad industrial.

<table>
<thead>
<tr>
<th>Calidad industrial (%)</th>
<th>bt</th>
<th>en</th>
<th>yeso</th>
<th>mancha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>68,9</td>
<td>62,8</td>
<td>5,1</td>
<td>0,18</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>0,9</td>
<td>6,4</td>
<td>32,3</td>
<td>56,7</td>
</tr>
</tbody>
</table>

bt: porcentaje de blanco total; en: porcentaje de grano entero; yeso: porcentaje de yeso en grano; mancha: porcentaje de mancha en grano.

4.10.1 **Porcentaje de blanco total y entero**

Los modelos ajustados de las variables blanco total y grano entero para la dosis única de clomazone fueron cuadráticos, con \(p=0,0276 \) y \(p=0,0122 \); respectivamente.

Los coeficientes de las regresiones obtenidas fueron (ver Anexos No. 61 y 63):

Blanco total:

\[
Y = 68,025 + 0,00376254 x - 0,0000027 x^2 \quad R^2 = 0,504 \quad n = 36
\]

Grano entero:

\[
Y = 56,56666667 + 0,02794801 x - 0,00002159 x^2 \quad R^2 = 0,443 \quad n = 36
\]

Donde:

\[Y: \text{porcentaje de blanco total o de grano entero}\]

\[x: \text{dosis de clomazone (g ha}^{-1}\)]

En la figura No. 19, se observa que los máximos para las dos variables son similares, estos se alcanzaron con dosis de 697 g ha\(^{-1}\) para blanco total y
647 g ha\(^{-1}\) para grano entero. La interferencia del capín en el tratamiento testigo afectó más al porcentaje de grano entero que al porcentaje de blanco total, al observar los valores reales para estas dos variables en el testigo se detectó mayor variabilidad en el porcentaje de gramos enteros.

Figura No. 19: Efecto de la dosis de clomazone sobre el porcentaje de blanco total y de grano entero.

La norma de comercialización interna del arroz en Uruguay, se rige por el decreto 321/988 promulgado en abril de 1988 y aplicado a partir de la cosecha 1989. Según este decreto la base de estas variables para la bonificación o deducción del precio son: 70% para el blanco total y de 58% para grano entero. Como se observa en la figura No. 19, los valores de blanco total para todas las dosis estuvieron por debajo de la base, por lo que llevarían descuentos en el precio. En cuanto a los resultados encontrados para grano entero las dosis de 53 g ha\(^{-1}\) o mayores de clomazone estuvieron por encima de la base, obteniendo bonificación en el precio.
4.10.2 Porcentaje de yeso y mancha

El modelo ajustado para el efecto de la dosis única de clomazone de la variable yeso fue cuadrático con $p=0.0216$, mientras que para la variable mancha este ajuste fue lineal con $p<0.0001$.

Los coeficientes de las regresiones obtenidas fueron (ver Anexos No. 65 y 66):

Porcentaje de yeso

$Y = 7.660966709 - 0.010224726 x + 0.00000736 x^2 \quad R^2 = 0.346 \quad n = 36$

Porcentaje de mancha:

$Y = 0.3219037874 - 0.0002637064 x \quad R^2 = 0.447 \quad n = 36$

Donde:

Y: porcentaje de yeso

x: dosis de clomazone (g ha$^{-1}$)

En la siguiente figura se observa que el mínimo porcentaje de yeso se encontró con una dosis de 695 g ha$^{-1}$, mientras que la disminución del porcentaje de mancha fue de 0,12% por cada 480 g ha$^{-1}$ de aumento en la dosis de clomazone aplicado. También se observa que hasta aproximadamente 480 g ha$^{-1}$ de clomazone la respuesta de ambas variables fue negativa, con dosis mayores a ésta solo la variable % de mancha presentó respuesta negativa considerable. Por lo que se puede deducir que las dosis mayores a 480 g ha$^{-1}$ afectaron más al % de mancha que al % de yeso.
Según las normas de calidad, para este experimento las aplicaciones menores de 190 y de 270 g ha$^{-1}$ para yeso y mancha respectivamente, sufrirían castigo sobre el precio por presentar valores superiores a las bases establecidas (0,25% para mancha y 6% para yeso).

4.11 CONTROL DE *Echinochloa* spp. A COSECHA

El ANAVA permite observar efecto significativo para los tratamientos herbicidas (p<0.0001), pero no para el factor momento del baño (ver Anexo No. 9). El control promedio fue de 3,8 en la escala de 0 a 5 puntos con un C.V. de 18,9%.

En este caso se observó un ajuste cuadrático para el efecto dosis única de clomazone con p<0,0001.
Los coeficientes de la regresión obtenida fueron (ver Anexo No. 68):

\[Y = 0.100000 + 0.0156664738 \times -0.0000116243 \times^2 \quad R^2 = 0.998 \quad n = 36 \]

Donde:

Y: control de capín según escala visual de 0 a 5

x: dosis de clomazone (g ha\(^{-1}\))

Figura No. 21: Efecto de la dosis de clomazone sobre el control de capín

Se estimó la dosis en la cual se alcanza el máximo físico para esta variable en 674 g ha\(^{-1}\). Sin embargo para este año en particular los valores reales de control fueron máximos para todos los tratamientos con herbicidas. Por lo que para años con condiciones ambientales similares a las presentadas para el mes de siembra del cultivo en este experimento (figura No. 5 y 6), una dosis de 480 g ha\(^{-1}\) de clomazone preemergente fue suficiente para obtener un control completo del capín. En otro estudio en Texas (O’Barr et al., 2007) llegaron a la conclusión que 340 g ha\(^{-1}\) de clomazone aplicado en preemergencia maximizaban el control de capín y el rendimiento de arroz, sin embargo los tres suelos sobre los cuales se llevaron a cabo los ensayos
presentaban menores contenidos de c. org. (0,77; 0,44 y 0,49% de c. org.) que el suelo del presente estudio (1,14% de c. org.).

4.12 CORRELACIONES ENTRE EL RENDIMIENTO Y LAS DEMÁS VARIABLES EVALUADAS

Como el factor momento del baño, ni el contraste entre la aplicación única de clomazone y la secuencia no diferieron significativamente para la variable rendimiento, a continuación se presentan en los cuadros No. 9 y 10 las correlaciones encontradas debidas a la variación producida por las dosis de clomazone. Los coeficientes de correlación mostrados son producto de operar con 36 pares de datos.

Cuadro No. 9: Coeficientes de correlación de Pearson y la significación encontrada en el estudio de correlaciones entre las variables medidas durante el ciclo vegetativo y a la cosecha con el rendimiento de arroz.

<table>
<thead>
<tr>
<th>Variables</th>
<th>plm2</th>
<th>alt1</th>
<th>alt2</th>
<th>tm2</th>
<th>bio0701</th>
<th>bio0902</th>
<th>bio2503</th>
<th>ic</th>
<th>est</th>
<th>F10</th>
<th>echccos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlación de Pearson (r)</td>
<td>-0,31</td>
<td>0,40</td>
<td>0,89</td>
<td>0,77</td>
<td>0,83</td>
<td>0,88</td>
<td>0,90</td>
<td>0,45</td>
<td>-0,82</td>
<td>0,58</td>
<td>0,96</td>
</tr>
<tr>
<td>Significancia (p)</td>
<td>0.0676</td>
<td>0.0149</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.0061</td>
<td><0.001</td>
<td>0.0002</td>
<td><0.001</td>
</tr>
</tbody>
</table>

plm2: plantas m⁻²; alt1: altura a macollaje; alt2: altura a cosecha; tm2: tallos m⁻²; bio0701: biomasa a primordio; bio0902: biomasa a inicio de floración; bio2503: biomasa a cosecha; ic: índice de cosecha; est: porcentaje de esterilidad; F10: días a inicio de floración; echccos: control de Echinochloa spp. (capín).

Como se observa en el cuadro No. 9 el control de capín está altamente correlacionado y en forma positiva con el rendimiento de arroz (r=0,96), por lo que la magnitud y el sentido de las correlaciones del control de capín con las demás variables evaluadas es similar a las correlaciones presentadas para rendimiento. De modo que se presentarán las correlaciones de las variables independientes con el rendimiento de arroz.

El número de plantas de arroz m⁻² no se correlacionó con el rendimiento, indicando que la toxicidad inicial sufrida al aumentar la dosis de clomazone no se tradujo en pérdida del mismo.

Las variables evaluadas: alturas a macollaje y a cosecha, biomasas a primordio, floración y cosecha, y el número de tallos m⁻² se correlacionaron
positivamente con el rendimiento. De estas variables la que menos se correlacionó fue la altura a macollaje \(r=0,40\).

El porcentaje de esterilidad sin embargo se correlacionó negativamente con el rendimiento \(r=-0,82\); esto permite explicar porque la dosis de clomazone necesaria para obtener la máxima biomasa a cosecha es mayor a la dosis necesaria para el máximo rendimiento, al provocarse una caída en el índice de cosecha a las dosis más altas por un incremento en la esterilidad.

Cuadro No. 10: Coeficientes de correlación de Pearson y significación encontrada en el estudio de correlaciones entre el rendimiento de arroz y las variables que componen el rendimiento y la calidad.

<table>
<thead>
<tr>
<th>Variables</th>
<th>panm2</th>
<th>gtp</th>
<th>gllp</th>
<th>gchp</th>
<th>gsllp</th>
<th>pmg</th>
<th>bt</th>
<th>en</th>
<th>yeso</th>
<th>man</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlación de Pearson (r)</td>
<td>0,67</td>
<td>0,73</td>
<td>0,86</td>
<td>-0,43</td>
<td>-0,40</td>
<td>0,61</td>
<td>0,69</td>
<td>0,66</td>
<td>-0,47</td>
<td>-0,62</td>
</tr>
<tr>
<td>Significancia (p)</td>
<td><0,0001</td>
<td><0,0001</td>
<td><0,0001</td>
<td>0,0090</td>
<td>0,0161</td>
<td><0,0001</td>
<td><0,0001</td>
<td><0,0001</td>
<td>0,0036</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

panm2: panojas m\(^{-2}\); gtp: granos totales panoja\(^{-1}\); gllp: granos llenos panoja\(^{-1}\); gchp: granos chuzos panoja\(^{-1}\); gsllp: granos semillenos panoja\(^{-1}\); pmg: peso de mil granos; bt: porcentaje de blanco total; en: porcentaje de grano entero; yeso: porcentaje de yeso en grano; man: porcentaje de mancha en grano.

Los componentes del rendimiento se correlacionaron positivamente con el rendimiento, excepto los granos chuzos panoja\(^{-1}\) y los granos semillenos panoja\(^{-1}\) que lo hicieron negativamente. Los granos llenos panojas\(^{-1}\) fueron los que más se correlacionaron con el rendimiento \(r=0,86\). Las correlaciones positivas en este experimento se deben principalmente a la interferencia del capín en el tratamiento testigo, que afectó de forma similar al rendimiento, a la mayoría de sus componentes y a las variables evaluadas en el ciclo vegetativo.

Para la calidad industrial se observó que al aumentar el rendimiento de arroz también se mejoró la calidad del mismo, por correlacionarse positivamente con el porcentaje de blanco total \(r=0,69\) y de grano entero \(r=0,66\), y negativamente con el porcentaje de yeso en grano \(r=-0,47\) y mancha en grano \(r=-0,62\).
5. CONCLUSIONES

Para este experimento las parcelas al momento de la aplicación de clomazone presentaron la misma humedad en el suelo.

No se detectó diferencia significativa para la interacción entre los factores en ninguna de las variables estudiadas, permitiendo hacer recomendaciones individuales para cada factor.

Para el factor momento del baño, se observaron diferencias significativas únicamente en las variables días a inicio de floración y altura a cosecha.

La aplicación de 1920 g ha$^{-1}$ de propanil postemergente en secuencia no mejoró el control obtenido con la aplicación de 480 g ha$^{-1}$ de clomazone preemergente. Tampoco se observaron diferencias significativas para las restantes variables evaluadas.

La disminución del número de plantas m$^{-2}$ a los 19 días de la emergencia en INIA Olimar al aumentar la dosis de clomazone preemergente, fue compensada a través de un mayor número de tallos y panojas m$^{-2}$.

La dosis de 674 g ha$^{-1}$ de clomazone preemergente optimizó el control de capín y maximizó el rendimiento del cultivo, beneficiándose al mismo tiempo la calidad industrial del grano.
6. RESUMEN

El experimento se condujo en la Unidad Experimental Paso de la Laguna del INIA Treinta y Tres en el año agrícola 2009-2010. El suelo usado fue un Solod Melánico de la unidad de mapeo “La Charqueada”. El objetivo fue evaluar el efecto de los tratamientos herbicidas en base a clomazone aplicado en preemergencia interaccionado con distintos momentos del baño en el control de capín y en el rendimiento del cv. INIA Olimar. Se utilizó un diseño en bloques completos al azar con arreglo factorial de los tratamientos herbicidas y del momento del baño, con 4 repeticiones. El factor tratamiento herbicida presentaba 4 niveles (0, 480, 864 g ha\(^{-1}\) de clomazone preemergente y una secuencia con 480 g ha\(^{-1}\) de clomazone preemergente seguido de 1920 g ha\(^{-1}\) de propanil postemergente); mientras que el factor momento del baño estaba constituido por 3 niveles (sin baño, baño 3 días antes de la aplicación del clomazone preemergente y baño a los 7 días posteriores a la misma). Las medidas tomadas fueron: número de plantas de arroz m\(^{-2}\), alturas de planta en macollaje y a cosecha, tallos de arroz m\(^{-2}\), biomasa de arroz, inicio de floración, índice de cosecha, rendimiento de arroz y sus componentes, porcentaje de esterilidad, control de capín y calidad industrial del arroz. El número de plantas de arroz disminuyó linealmente con la dosis de clomazone, reduciéndose en 8 pl m\(^{-2}\) por cada 100 g ha\(^{-1}\). Se detectaron máximos para las dos alturas de plantas con 547 y 768 g ha\(^{-1}\) a macollaje y cosecha, respectivamente. El número de tallos m\(^{-2}\) se incrementó significativamente con la dosis hasta un máximo con 611 g ha\(^{-1}\), revirtiéndose de esta manera la toxicidad inicial observada. Las tres biomasas presentaron máximos entre 689 y 786 g ha\(^{-1}\). Se observaron diferencias significativas debido a la dosis en el inicio de floración, con un atraso de 1,5 días por cada 480 g ha\(^{-1}\) de incremento de clomazone; también se detectó diferencias para el momento del baño, siendo el atraso de 1 día para el baño realizado 3 días previos a la aplicación. Se detectaron máximos para el rendimiento y el control de capín con 674 g ha\(^{-1}\). Todos los componentes del rendimiento menos granos chuzos y semillenos panojas\(^{-1}\) presentaron diferencias significativas para las dosis de clomazone, siendo estas respuestas lineales positivas excepto para granos llenos panojas\(^{-1}\) que tuvo un máximo con 774 g ha\(^{-1}\). Para la variable porcentaje de esterilidad se obtuvo un mínimo con 608 g ha\(^{-1}\). Los porcentajes de blanco total y entero presentaron máximos con 697 y con 647 g ha\(^{-1}\), respectivamente. El porcentaje de grano con yeso presentó un mínimo con 695 g ha\(^{-1}\), mientras que el porcentaje de granos manchados disminuyó linealmente con el aumento de la dosis.

Palabras clave: *Oryza sativa*; Arroz; Control de capín; *Echinochloa* spp.; Clomazone; Momento del baño
7. SUMMARY

The experiment was conducted at the Experiment Unit Paso de la Laguna in INIA Treinta y Tres in year 2009-2010. The soil used was a Melanic Solod belonging to the mapping unit named "La Charqueada." The objective of this study was to evaluate barnyard grass control and yield of rice cv. INIA Olimar due to effects of herbicide treatments based on clomazone preemergence applied and timing of flushing. A block design completely randomized with factorial arrangement of treatments with four replications. The herbicide treatment had four levels (0, 480, 864 g ha\(^{-1}\) and a sequence of 480 preemergence clomazone followed by 1920 g ha\(^{-1}\) of propanil post emergence); while timing of flushing was three levels (no flush, with flush 3 days before the application of clomazone, and with flush 7 days later). The measurements were taken: number of rice plants m\(^{-2}\), plant height at the tiller stage and harvest stages, rice tillers m\(^{-2}\), rice biomass, beginning of flowering, harvest index, rice grain yield and components, percentage of sterility, control of barnyard grass and milling quality of rice. The number of rice plants decreased linearly at 8 plants m\(^{-2}\) by 100 g ha\(^{-1}\) along dose of clomazone preemergence applied. For the two height measurements, two maximums were detected in 547 and 768 g ha\(^{-1}\) at the tiller and harvest stages, respectively. The number of tillers m\(^{-2}\) significantly increased with dose up to 611 g ha\(^{-1}\), thus reversing the initial toxicity observed. The three biomass measurements showed maximums between 689 and 786 g ha\(^{-1}\). Significant differences due to dose at the beginning of flowering, with a delay of 1.4 days per 480 g ha\(^{-1}\) for increase clomazone; also a difference to the timing of flushing was detected. The flush done three days before herbicide spraying flowered one day later than the other treatments. Significant effect was detected for doses of clomazone in control of barnyard grass and rice yield with a maximum at 674 g ha\(^{-1}\). All components of yield showed significant differences, but empty grains and medium-full grains panicles\(^{-1}\). These responses were linear and positive except for filled grains panicle\(^{-1}\) that peaked at 774 g ha\(^{-1}\). A minimum was reached for the percentage of sterility at 608 g ha\(^{-1}\). Total milled and head rice percentages showed maximums at 697 and 647 g ha\(^{-1}\), respectively. The chalky grain percentage (chalkiness) showed a minimum at 695 g ha\(^{-1}\), while the percentage of lightly stained kernels decreased linearly with doses increase.

Keywords: *Oryza sativa*; Rice; Barnyard grass control, *Echinochloa* spp.; Clomazone; Timing of flushing
8. BIBLIOGRAFIA

30. TAYLOR, C. M. 1989. Composite list of weeds. s.l., Weed Science Society of America. 112 p

systems for bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technology.16 (4): 838-844.

9. ANEXOS

Anexo No. 1: Cuadro de ANAVA para la variable No. de plantas de arroz m2 a los 19 días de la emergencia.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>6,35</td>
<td>0,0016</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,10</td>
<td>0,9042</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>1,24</td>
<td>0,3116</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>17,25</td>
<td>0,0002</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>1,49</td>
<td>0,2304</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,00</td>
<td>0,9715</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>1953,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td>308</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 2: Cuadro de ANAVA para la variable altura de las plantas de arroz en cm. a inicio de macollaje.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>5,83</td>
<td>0,0026</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>1,98</td>
<td>0,1537</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>1,51</td>
<td>0,2045</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>4,16</td>
<td>0,0494</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>5,10</td>
<td>0,0307</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,64</td>
<td>0,4284</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>2,0341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td>21,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 3: Cuadro de ANAVA para la variable biomasa de arroz a primordio en Kg. ha\(^{-1}\).

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>17,58</td>
<td><0,0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,30</td>
<td>0,7450</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,26</td>
<td>0,9500</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>38,35</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>5,84</td>
<td>0,0214</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,27</td>
<td>0,6097</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>383426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>3886</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 4: Cuadro de ANAVA para la variable tallos de arroz m\(^{-2}\) a macollaje.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>17,06</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>1,16</td>
<td>0,3254</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,93</td>
<td>0,4838</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>27,55</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>9,34</td>
<td>0,0044</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,75</td>
<td>0,3932</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>9630,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>735</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 5: Cuadro de ANAVA para la variable biomasa de arroz en floración en Kg. ha\(^{-1}\).

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>39.91</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0.43</td>
<td>0.6530</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0.56</td>
<td>0.7583</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>88.36</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>15.95</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0.02</td>
<td>0.8758</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>1728188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>11431</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 6: Cuadro de ANAVA para la variable inicio de floración en días.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>13.45</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>12.78</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0.65</td>
<td>0.6662</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>33.84</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>2.52</td>
<td>0.1216</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0.09</td>
<td>0.7624</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>1,1941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 7: Cuadro de ANAVA para la variable biomasa de arroz a cosecha en Kg. ha\(^{-1}\).

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>38,69</td>
<td><,0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,57</td>
<td>0,5714</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,63</td>
<td>0,7052</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>97,25</td>
<td><,0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>9,43</td>
<td>0,0043</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,00</td>
<td>0,9995</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>6058807</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>18674</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 8: Cuadro de ANAVA para la variable índice de cosecha.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>5,13</td>
<td>0,0051</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,18</td>
<td>0,8363</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>1,48</td>
<td>0,2142</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>2,89</td>
<td>0,0983</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>10,04</td>
<td>0,0033</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,62</td>
<td>0,4377</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>0,000619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>0,54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 9: Cuadro de ANAVA para la variable control de capín a cosecha.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>125,73</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,48</td>
<td>0,6243</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,50</td>
<td>0,8021</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>267,20</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>58,79</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,01</td>
<td>0,9342</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>0,5138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>3,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 10: Cuadro de ANAVA para la variable altura del arroz a cosecha en cm.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>38,27</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>3,30</td>
<td>0,0495</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,18</td>
<td>0,9801</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>92,53</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>11,87</td>
<td>0,0016</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,01</td>
<td>0,9307</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>6,99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>92,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 11: Cuadro de ANAVA para la variable % de humedad del grano de arroz.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>44,25</td>
<td><0,0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,81</td>
<td>0,4544</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,37</td>
<td>0,8949</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>98,56</td>
<td><0,0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>15,95</td>
<td>0,0003</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,17</td>
<td>0,6863</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>1,2212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>16,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 12: Cuadro de ANAVA para la variable rendimiento de arroz en toneladas ha\(^{-1}\).

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>73,81</td>
<td><0,0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,71</td>
<td>0,4995</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,38</td>
<td>0,8869</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>162,15</td>
<td><0,0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>37,02</td>
<td><0,0001</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,48</td>
<td>0,4911</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>1,3578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 13: Cuadro de ANAVA para la variable No. de panojas de arroz m$^{-2}$.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>10,03</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,34</td>
<td>0,7176</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,46</td>
<td>0,8322</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>27,46</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>0,63</td>
<td>0,4313</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,13</td>
<td>0,7236</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>15773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>701</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 14: Cuadro de ANAVA para la variable granos totales panoja$^{-1}$.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>17,41</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,52</td>
<td>0,5986</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,56</td>
<td>0,7550</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>44,25</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>2,91</td>
<td>0,0976</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,15</td>
<td>0,6986</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>133,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 15: Cuadro de ANAVA para la variable gramos llenos panoja $^{-1}$.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>27,00</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,21</td>
<td>0,8133</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,17</td>
<td>0,9823</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>63,92</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>7,77</td>
<td>0,0087</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,08</td>
<td>0,7826</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>103,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 16: Cuadro de ANAVA para la variable gramos chuzos panoja $^{-1}$.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>1,54</td>
<td>0,2216</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>1,92</td>
<td>0,1621</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>1,47</td>
<td>0,2178</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>0,73</td>
<td>0,4006</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>2,84</td>
<td>0,1014</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,06</td>
<td>0,8016</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>20,4256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>10,6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 17: Cuadro de ANAVA para la variable granos semillenos panoja\(^{-1}\).

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>1,92</td>
<td>0,1458</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,57</td>
<td>0,5687</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,40</td>
<td>0,8712</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>1,32</td>
<td>0,2591</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>4,08</td>
<td>0,0516</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,70</td>
<td>0,4102</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>0,04753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 18: Cuadro de ANAVA para la variable peso de mil granos en gramos.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>5,00</td>
<td>0,0057</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>1,26</td>
<td>0,2981</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,91</td>
<td>0,4987</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>10,53</td>
<td>0,0027</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>1,91</td>
<td>0,1761</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,06</td>
<td>0,8010</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>0,2198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>26,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 19: Cuadro de ANAVA para la variable % de esterilidad.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>14,16</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>2,23</td>
<td>0,1231</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>1,01</td>
<td>0,4383</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>24,85</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>10,20</td>
<td>0,0031</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,00</td>
<td>0,9579</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>33,2350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>15,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 20: Cuadro de ANAVA para la variable % de blanco total.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>11,09</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,28</td>
<td>0,7568</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0,68</td>
<td>0,6694</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>25,50</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>5,31</td>
<td>0,0276</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,22</td>
<td>0,6441</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>0,3558</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>68,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 21: Cuadro de ANAVA para la variable % de grano entero.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>11.71</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0.70</td>
<td>0.5057</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>1.25</td>
<td>0.3085</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>24.16</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>7.03</td>
<td>0.0122</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0.10</td>
<td>0.7489</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>15,941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>62.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 22: Cuadro de ANAVA para la variable % de yeso en grano.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>12.38</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0.71</td>
<td>0.4981</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>0.78</td>
<td>0.5900</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>25.80</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>5.82</td>
<td>0.0216</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0.01</td>
<td>0.9045</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>2.7149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad
Anexo No. 23: Cuadro de ANAVA para la variable % de mancha en grano.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento herbicida</td>
<td>3</td>
<td>13,03</td>
<td><,001</td>
<td></td>
</tr>
<tr>
<td>Momento del baño</td>
<td>2</td>
<td>0,16</td>
<td>0,8524</td>
<td></td>
</tr>
<tr>
<td>Tratamiento* momento del baño</td>
<td>6</td>
<td>1,20</td>
<td>0,3299</td>
<td></td>
</tr>
<tr>
<td>Regresión lineal</td>
<td>1</td>
<td>33,04</td>
<td><,0001</td>
<td></td>
</tr>
<tr>
<td>Regresión cuadrática</td>
<td>1</td>
<td>1,45</td>
<td>0,2373</td>
<td></td>
</tr>
<tr>
<td>Clomazone PRE vs secuencia</td>
<td>1</td>
<td>0,44</td>
<td>0,5098</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>0,01043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>0,18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE: preemergencia; secuencia: clomazone PRE seguido de propanil en postemergencia; gl: grados de libertad; CM: cuadrado medio; F: valor de F calculado; Pr: probabilidad

Anexo No. 24: Cuadro de medias para las variables plantas de arroz m\(^2\) a 19 días de la emergencia (DDE), altura a los 24 DDE y tallos de arroz m\(^2\) a los 38 DDE para el factor momento del baño (*).

<table>
<thead>
<tr>
<th>Momento del baño</th>
<th>Plantas de arroz m(^2)</th>
<th>Altura a macollaje (cm.)</th>
<th>Tallos m(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3antes</td>
<td>311</td>
<td>21,4</td>
<td>743</td>
</tr>
<tr>
<td>7después</td>
<td>310</td>
<td>22,3</td>
<td>757</td>
</tr>
<tr>
<td>sin baño</td>
<td>304</td>
<td>21,4</td>
<td>706</td>
</tr>
</tbody>
</table>

3antes: baño 3 días antes de la aplicación de clomazone; 7después: baño 7 días después de la aplicación de clomazone; (*): promedio para cada nivel del factor momento del baño a través de los tratamientos herbicidas estudiados.
Anexo No. 25: Cuadro de medias de las biomasas para el factor momento del baño (*).

<table>
<thead>
<tr>
<th>Momento del baño</th>
<th>Biomasa (Kg. ha⁻¹)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a primordio</td>
<td>a floración</td>
<td>a cosecha</td>
</tr>
<tr>
<td>3antes</td>
<td>3841</td>
<td>11539</td>
<td>18239</td>
</tr>
<tr>
<td>7después</td>
<td>3983</td>
<td>11575</td>
<td>18614</td>
</tr>
<tr>
<td>sin baño</td>
<td>3832</td>
<td>11180</td>
<td>19170</td>
</tr>
</tbody>
</table>

3antes: baño 3 días antes de la aplicación de clomazone; 7después: baño 7 días después de la aplicación de clomazone; (*): promedio para cada nivel del factor momento del baño a través de los tratamientos herbicidas estudiados.

Anexo No. 26: Cuadro de medias de las variables medidas a cosecha para el factor momento del baño (*).

<table>
<thead>
<tr>
<th>Momento del baño</th>
<th>Índice de cosecha</th>
<th>Rendimiento (tt. ha⁻¹)</th>
<th>% de esterilidad</th>
<th>Control visual de capín</th>
</tr>
</thead>
<tbody>
<tr>
<td>3antes</td>
<td>0,54</td>
<td>8,7</td>
<td>13,0</td>
<td>3,8</td>
</tr>
<tr>
<td>7después</td>
<td>0,54</td>
<td>8,3</td>
<td>16,7</td>
<td>3,8</td>
</tr>
<tr>
<td>sin baño</td>
<td>0,53</td>
<td>8,7</td>
<td>16,8</td>
<td>4,0</td>
</tr>
</tbody>
</table>

3antes: baño 3 días antes de la aplicación de clomazone; 7después: baño 7 días después de la aplicación de clomazone; (*): promedio para cada nivel del factor momento del baño a través de los tratamientos herbicidas estudiados.

Anexo No. 27: Cuadro de medias de las variables que componen el rendimiento para el factor momento del baño (*).

<table>
<thead>
<tr>
<th>Momento del baño</th>
<th>Panojas m⁻²</th>
<th>Granos panoja⁻¹</th>
<th>Peso de mil granos (gramos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>totales</td>
<td>llenos</td>
</tr>
<tr>
<td>3antes</td>
<td>721</td>
<td>69</td>
<td>60</td>
</tr>
<tr>
<td>7después</td>
<td>684</td>
<td>70</td>
<td>59</td>
</tr>
<tr>
<td>sin baño</td>
<td>699</td>
<td>73</td>
<td>61</td>
</tr>
</tbody>
</table>

3antes: baño 3 días antes de la aplicación de clomazone; 7después: baño 7 días después de la aplicación de clomazone; (*): promedio para cada nivel del factor momento del baño a través de los tratamientos herbicidas estudiados.
Anexo No. 28: Cuadro de medias de las variables de calidad industrial para el factor momento del baño (*).

<table>
<thead>
<tr>
<th>Momento del baño</th>
<th>Porcentaje de blanco total</th>
<th>grano entero</th>
<th>yeso en grano</th>
<th>mancha en grano</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 antes</td>
<td>69,0</td>
<td>63,5</td>
<td>4,8</td>
<td>0,20</td>
</tr>
<tr>
<td>7 después</td>
<td>68,9</td>
<td>61,9</td>
<td>5,5</td>
<td>0,18</td>
</tr>
<tr>
<td>sin baño</td>
<td>68,8</td>
<td>63,1</td>
<td>5,0</td>
<td>0,18</td>
</tr>
</tbody>
</table>

3 antes: baño 3 días antes de la aplicación de clomazone; 7 después: baño 7 días después de la aplicación de clomazone; (*): promedio para cada nivel del factor momento del baño a través de los tratamientos herbicidas estudiados.

Anexo No. 29: Cuadro de medias para el contraste entre la dosis de 480 g ha\(^{-1}\) de clomazone preemergente (PRE) y la secuencia de 480 g ha\(^{-1}\) de clomazone (PRE) seguido de 1920 g ha\(^{-1}\) de propanil postemergente (*).

<table>
<thead>
<tr>
<th>Tratamiento de dosis</th>
<th>Plantas de arroz m(^{-2})</th>
<th>Altura (cm.)</th>
<th>Tallos de arroz m(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>macollaje</td>
<td>cosecha</td>
</tr>
<tr>
<td>clomazone</td>
<td>316</td>
<td>22,7</td>
<td>94,5</td>
</tr>
<tr>
<td>secuencia</td>
<td>316</td>
<td>20,4</td>
<td>94,4</td>
</tr>
</tbody>
</table>

(*): promedio del factor tratamiento a través de los tres momentos del baño.

Anexo No. 30: Cuadro de medias para el contraste entre la dosis de 480 g ha\(^{-1}\) de clomazone preemergente (PRE) y la secuencia de 480 g ha\(^{-1}\) de clomazone (PRE) seguido de 1920 g ha\(^{-1}\) de propanil postemergente (*).

<table>
<thead>
<tr>
<th>Tratamiento de dosis</th>
<th>Biomasa (Kg. ha(^{-1}))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a primordio</td>
<td>a floración</td>
</tr>
<tr>
<td>clomazone</td>
<td>4167</td>
<td>12504</td>
</tr>
<tr>
<td>secuencia</td>
<td>4301</td>
<td>12591</td>
</tr>
</tbody>
</table>

(*): promedio del factor tratamiento a través de los tres momentos del baño.
Anexo No. 31: Cuadro de medias para el contraste entre la dosis de 480 g ha\(^{-1}\) de clomazone preemergente (PRE) y la secuencia de 480 g ha\(^{-1}\) de clomazone (PRE) seguido de 1920 g ha\(^{-1}\) de propanil postemergente (*).

<table>
<thead>
<tr>
<th>Tratamiento de dosis</th>
<th>Inicio de floración(**)</th>
<th>Índice de cosecha</th>
<th>Rendimiento (tt. ha(^{-1}))</th>
<th>% esterilidad</th>
<th>Control visual de capín</th>
</tr>
</thead>
<tbody>
<tr>
<td>clomazone</td>
<td>6</td>
<td>0,55</td>
<td>10,1</td>
<td>11,8</td>
<td>5,0</td>
</tr>
<tr>
<td>secuencia</td>
<td>6</td>
<td>0,54</td>
<td>9,8</td>
<td>11,9</td>
<td>5,0</td>
</tr>
</tbody>
</table>

(*): promedio del factor tratamiento a través de los tres momentos del baño; (**): días a partir del 1\(^{o}\) de febrero.

Anexo No. 32: Cuadro de medias para el contraste entre la dosis de 480 g ha\(^{-1}\) de clomazone preemergente (PRE) y la secuencia de 480 g ha\(^{-1}\) de clomazone (PRE) seguido de 1920 g ha\(^{-1}\) de propanil postemergente (*).

<table>
<thead>
<tr>
<th>Tratamiento de dosis</th>
<th>Panojas m(^{-2})</th>
<th>Granos panoja(^{-1})</th>
<th>Peso de mil granos gramos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>totales llenos chuzos semillenos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clomazone</td>
<td>722</td>
<td>75 66 9 0,2</td>
<td>27,0</td>
</tr>
<tr>
<td>secuencia</td>
<td>741</td>
<td>77 67 9 0,3</td>
<td>27,1</td>
</tr>
</tbody>
</table>

(*): promedio del factor tratamiento a través de los tres momentos del baño.

Anexo No. 33: Cuadro de medias para el contraste entre la dosis de 480 g ha\(^{-1}\) de clomazone preemergente (PRE) y la secuencia de 480 g ha\(^{-1}\) de clomazone (PRE) seguido de 1920 g ha\(^{-1}\) de propanil postemergente (*).

<table>
<thead>
<tr>
<th>Tratamiento de dosis</th>
<th>Porcentaje de blanco total grano entero yeso en grano mancha en grano</th>
</tr>
</thead>
<tbody>
<tr>
<td>clomazone</td>
<td>69,2 65,1 4,3 0,16</td>
</tr>
<tr>
<td>secuencia</td>
<td>69,1 64,6 4,2 0,13</td>
</tr>
</tbody>
</table>

(*): promedio del factor tratamiento a través de los tres momentos del baño.
Anexo No. 34: Cuadro de medias para los tratamientos con solo una aplicación de clomazone preemergente (*)

<table>
<thead>
<tr>
<th>Dosis (g ha⁻¹)</th>
<th>Granos panoja⁻¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>chuzos</td>
<td>semillenos</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>0,4</td>
</tr>
<tr>
<td>480</td>
<td>9</td>
<td>0,2</td>
</tr>
<tr>
<td>864</td>
<td>11</td>
<td>0,3</td>
</tr>
</tbody>
</table>

(*) promedio del factor dosis de clomazone a través de los tres momentos del baño estudiado.
Anexo No. 35: ANAVA de regresión lineal para número de plantas m\(^2\)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>30855,4166</td>
<td>30855,4166</td>
<td>14,37</td>
<td>0,0006</td>
</tr>
<tr>
<td>Error</td>
<td>72993,1032</td>
<td>2146,8560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>103848,5198</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>30855,41658</td>
<td>30855,41658</td>
<td>14,37</td>
<td>0,0006</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------------|-------------------|----------------------|---------|------|
| Término ind. dosis1 | 344,6239151 | 12,46762840 | 27,64 | <,0001|
| | -0,0828294 | 0,02184843 | -3,79 | 0,0006|

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,297119</td>
<td>15,06722</td>
<td>46,33418</td>
<td>307,5163</td>
</tr>
</tbody>
</table>
Anexo No. 36: ANAVA de regresión lineal para altura a macollaje

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>8,7022427</td>
<td>8,7022427</td>
<td>1,89</td>
<td>0,1780</td>
</tr>
<tr>
<td>Error</td>
<td>156,3874795</td>
<td>4,5996318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>165,0897222</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>8,7022427</td>
<td>1,89</td>
<td>0,1780</td>
</tr>
<tr>
<td>Error</td>
<td>4,5996318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13,2918738</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|------------|-----------|----------------|---------|-------|---|
| Término ind. | 20,67404372 | 0,57709050 | 35,82 | <0,0001 |
| dosis1 | 0,00139102 | 0,00101130 | 1,38 | 0,1780 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,052712</td>
<td>10,07021</td>
<td>2,144675</td>
<td>21,29722</td>
</tr>
</tbody>
</table>

Anexo No. 37: ANAVA de regresión cuadrática para altura a macollaje

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>17,3472222</td>
<td>8,6736111</td>
<td>1,94</td>
<td>0,1601</td>
</tr>
<tr>
<td>Error</td>
<td>147,7425000</td>
<td>4,4770455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>165,0897222</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>8,6497951</td>
<td>2,97</td>
<td>0,0944</td>
</tr>
<tr>
<td>Total</td>
<td>13,3040736</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|------------|-----------|----------------|---------|-------|---|
| Término ind. | 20,36666667 | 0,61080858 | 33,34 | <0,0001 |
| dosis1 | 0,00618490 | 0,00359123 | 1,72 | 0,0944 |
| dosis1*dosis1 | -0,00000565 | -0,00000407 | -1,39 | 0,1740 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,105078</td>
<td>9,935113</td>
<td>2,115903</td>
<td>21,29722</td>
</tr>
</tbody>
</table>
Anexo No. 38: ANAVA de regresión lineal para altura a cosecha

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>1</td>
<td>684,7299699</td>
<td>684,7299699</td>
<td>77,12</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>301,8687955</td>
<td>8,8784940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>986,5987654</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>684,7299699</td>
<td>684,7299699</td>
<td>77,12</td>
<td><,0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------------|-----------|----------------|---------|------|---|
| Término ind. dosis1 | 86,15733151 | 0,80177414 | 107,46 | <,0001 |
| | 0,01233896 | 0,00140504 | 8,78 | <,0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,694031</td>
<td>3,249904</td>
<td>2,979680</td>
<td>91,68519</td>
</tr>
</tbody>
</table>

Anexo No. 39: ANAVA de regresión cuadrática para altura a cosecha

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>2</td>
<td>772,0293210</td>
<td>386,0146605</td>
<td>59,37</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>214,5694444</td>
<td>6,5021044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>986,5987654</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>263,9169270</td>
<td>263,9169270</td>
<td>40,59</td>
<td><,0001</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td>1</td>
<td>87,2993511</td>
<td>87,2993511</td>
<td>13,43</td>
<td>0,0009</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------------|-----------|----------------|---------|------|---|
| Término ind. dosis1 | 85,18055556 | 0,73609920 | 115,72 | <,0001 |
| | 0,02757282 | 0,00432787 | 6,37 | <,0001 |
| | -0,000001796 | 0,00000490 | -3,66 | 0,0009 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,782516</td>
<td>2,781172</td>
<td>2,549922</td>
<td>91,68519</td>
</tr>
</tbody>
</table>
Anexo No. 40: ANAVA de regresión lineal para biomasa a primordio

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
<td>16248798,37</td>
<td>16248798,37</td>
<td>39,49</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>13990784,52</td>
<td>4411493,66</td>
<td><,.001</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>30239582,89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
<td>16248798,37</td>
<td>16248798,37</td>
<td>39,49</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>13990784,52</td>
<td>4411493,66</td>
<td><,.001</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>30239582,89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------|-------------------|----------------------|---------|------|
| término ind. | | | | |
| dosis1 | 2864,108807 | 172,6092119 | 16,59 | <,.001 |
| | 1,900770 | 0,3024826 | 6,28 | <,.001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,537335</td>
<td>17,26420</td>
<td>641,4777</td>
<td>3715,654</td>
</tr>
</tbody>
</table>

Anexo No. 41: ANAVA de regresión cuadrática para biomasa a primordio

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>2</td>
<td>19144084,79</td>
<td>9572042,40</td>
<td>28,47</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>11095498,10</td>
<td>336227,22</td>
<td><,.001</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>30239582,89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
<td>7587125,516</td>
<td>7587125,516</td>
<td>22,57</td>
</tr>
<tr>
<td>Error</td>
<td>1</td>
<td>2895286,422</td>
<td>2895286,422</td>
<td>8,61</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>30239582,89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------|-------------------|----------------------|---------|------|
| término ind. | | | | |
| dosis1 | 2686,225490 | 167,3885736 | 16,05 | <,.001 |
| | 4,675049 | 0,9841561 | 4,75 | <,.001 |
| | 0,003271 | 0,0011145 | -2,93 | 0,0060 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,633080</td>
<td>15,60563</td>
<td>579,8510</td>
<td>3715,654</td>
</tr>
</tbody>
</table>
Anexo No. 42: ANAVA de regresión lineal para biomasa a floración

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
<td>694798919</td>
<td>694798919</td>
<td>75,86</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>34</td>
<td>311392946</td>
<td>9158616</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1006191865</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
<td>694798919,0</td>
<td>75,86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|--------------|---------------------|----------------|----------|------|
| Término ind. | dosis1 | | | |
| Dosis1 | 8146,692633 | 814,3241613 | 20,01 | <.001|
| | 6,214538 | 1,4270322 | 8,71 | <.001|

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,690485</td>
<td>13,84319</td>
<td>3026,321</td>
<td>10930,72</td>
</tr>
</tbody>
</table>

Anexo No. 43: ANAVA de regresión cuadrática para biomasa a floración

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>2</td>
<td>844104760</td>
<td>422052380</td>
<td>85,93</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>33</td>
<td>162087105</td>
<td>4911730</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1006191865</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
<td>363330569,3</td>
<td>73,97</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
<td>149305840,8</td>
<td>30,40</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|--------------|---------------------|----------------|----------|------|
| Término ind. | dosis1 | | | |
| Dosis1 | 7507,916667 | 639,7740782 | 23,47 | <.001|
| | 16,176929 | 3,7615326 | 8,60 | <.001|
| | -0,011744 | 0,0042598 | -5,51 | <.001|

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,838905</td>
<td>10,13768</td>
<td>2216,242</td>
<td>10930,72</td>
</tr>
</tbody>
</table>
Anexo No. 44: ANAVA de regresión lineal para biomasa a cosecha

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>1</td>
<td>651536967,8</td>
<td>651536967,8</td>
<td>108,63</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>203920774,4</td>
<td>5997669,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>855457742,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosis1</td>
<td>1</td>
<td>651536967,8</td>
<td>651536967,8</td>
<td>108,63</td>
<td><,0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error | Valor t | Pr > |t||
|------------|-----------|-------|---------|------|
| Dosis1 | 12514,16747 | 658,9821815 | 18,99 | <,0001 |
| Dosis1 | 12,03617 | 1,1548089 | 10,42 | <,0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,761624</td>
<td>13,67677</td>
<td>2449,014</td>
<td>17906,37</td>
</tr>
</tbody>
</table>

Anexo No. 45: ANAVA de regresión cuadrática para biomasa a cosecha

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>2</td>
<td>726453535,2</td>
<td>363226767,6</td>
<td>92.92</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>129004207,0</td>
<td>3909218,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>855457742,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosis1</td>
<td>1</td>
<td>237351932,6</td>
<td>237351932,6</td>
<td>60,72</td>
<td><,0001</td>
</tr>
<tr>
<td>Dosis1*Dosis1</td>
<td>1</td>
<td>74916567,4</td>
<td>74916567,4</td>
<td>19,16</td>
<td>0,0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error | Valor t | Pr > |t||
|------------|-----------|-------|---------|------|
| Dosis1 | 11609,31373 | 570,7610705 | 20,34 | <,0001 |
| Dosis1 | 26,14833 | 3,3557727 | 7,79 | <,0001 |
| Dosis1*Dosis1 | -0,01664 | 0,0038003 | -4,38 | 0,0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,849199</td>
<td>11,04174</td>
<td>1977,174</td>
<td>17906,37</td>
</tr>
</tbody>
</table>
Anexo No. 46: ANAVA de regresión lineal para tallos m\(^2\)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>1</td>
<td>311537,9340</td>
<td>311537,9340</td>
<td>21,17</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>500394,5493</td>
<td>14717,4867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>811932,4832</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>311537,9340</td>
<td>311537,9340</td>
<td>21,17</td>
<td><.0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------|-----------|----------------|---------|------|---|
| Término ind. | 585,4119790 | 32,64368819 | 17,93 | <.0001 |
| dosis1 | 0,2631930 | 0,05720522 | 4,60 | <.0001 |

R-cuadrado | Coef Var | Raíz MSE | Media |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,383699</td>
<td>17,24844</td>
<td>121,3156</td>
<td>703,3224</td>
</tr>
</tbody>
</table>

Anexo No. 47: ANAVA de regresión cuadrática para tallos m\(^2\)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>2</td>
<td>446131,1889</td>
<td>223065,5944</td>
<td>20,12</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>365801,2944</td>
<td>11084,8877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>8119324832</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>257552,3320</td>
<td>257552,3320</td>
<td>23,23</td>
<td><.0001</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td>1</td>
<td>134593,2549</td>
<td>134593,2549</td>
<td>12,14</td>
<td>0,0014</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------|-----------|----------------|---------|------|---|
| Término ind. | 547,0588235 | 30,39310189 | 18,00 | <.0001 |
| dosis1 | 0,8613513 | 0,17869534 | 4,82 | <.0001 |
| dosis1*dosis1 | 0,0007052 | 0,00020237 | -3,48 | 0,0014 |

R-cuadrado | Coef Var | Raíz MSE | Media |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,549468</td>
<td>14,96963</td>
<td>105,2848</td>
<td>703,3224</td>
</tr>
</tbody>
</table>
Anexo No. 48: ANAVA de regresión lineal para días a inicio de floración

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>DF 417085610</td>
<td>417085610</td>
<td>19,53</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>34 72,5969945</td>
<td>2,1352057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35 114,3055556</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1 417085610</td>
<td>417085610</td>
<td>19,53</td>
<td><,0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|--------------|-------------------|----------------------|---------|------|---|
| Término ind. | 3,774590164 | 0,39318981 | 9,60 | <,0001|
| dosis1 | 0,003045310 | 0,00068903 | 4,42 | <,0001|

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,364887</td>
<td>28,43483</td>
<td>1,461234</td>
<td>5,138889</td>
</tr>
</tbody>
</table>
Anexo No. 49: ANAVA de regresión lineal para índice de cosecha

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>DF 1</td>
<td>0,00190366</td>
<td>0,00190366</td>
<td>1,99</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>0,03438761</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>0,00190366</td>
<td>1,99</td>
<td>0,1672</td>
</tr>
<tr>
<td>Error</td>
<td>0,00095541</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Error | Valor t | Pr > |t| |
|--------------|-------|---------|------|---|
| Término ind. | | | | |
| dosis1 | 0,5224185843 | 62,81 | <,0001|
| | 0,000205738 | 1,41 | 0,1672|

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,055359</td>
<td>5,814079</td>
<td>0,030910</td>
<td>0,531636</td>
</tr>
</tbody>
</table>

Anexo No. 50: ANAVA de regresión cuadrática para índice de cosecha

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>DF 2</td>
<td>0,00809862</td>
<td>0,00404931</td>
<td>5,08</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>0,03438761</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>0,00769677</td>
<td>9,66</td>
<td>0,0039</td>
</tr>
<tr>
<td>Error</td>
<td>0,00079664</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Error | Valor t | Pr > |t| |
|--------------|-------|---------|------|---|
| Término ind. | | | | |
| dosis1 | 0,5141903121 | 63,11 | <,0001|
| dosis1*dosis1| 0,00619496 | 7,78 | 0,0087|

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,235510</td>
<td>5,309039</td>
<td>0,028225</td>
<td>0,531636</td>
</tr>
</tbody>
</table>

Anexo No. 51: ANAVA de regresión lineal para rendimiento

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>1</td>
<td>240,0384990</td>
<td>240,0384990</td>
<td>95,10</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>85,8193900</td>
<td>2,5240997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>325,857890</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>240,0384990</td>
<td>240,0384990</td>
<td>95,10</td>
<td><.0001</td>
</tr>
</tbody>
</table>

| Parámetro | Error | Valor t | Pr > |t| |
|-----------|------------------------|---------|------|
| dosis1 | 4,733572163 | 11,07 | <.0001 |
| Parámetro | Error | Valor t | Pr > |t| |
| Término ind. | 0,003705657 | 9,75 | <.0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,736636</td>
<td>19,84313</td>
<td>1,588742</td>
<td>8,006507</td>
</tr>
</tbody>
</table>

Anexo No. 52: ANAVA de regresión cuadrática para rendimiento

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>2</td>
<td>298,2289275</td>
<td>149,1144637</td>
<td>178,10</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>27,6289615</td>
<td>0,8372413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>325,857890</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>135,3114410</td>
<td>135,3114410</td>
<td>161,62</td>
<td><.0001</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td>1</td>
<td>58,190484</td>
<td>58,190484</td>
<td>69,50</td>
<td><.0001</td>
</tr>
</tbody>
</table>

| Parámetro | Error | Valor t | Pr > |t| |
|-----------|------------------------|---------|------|
| dosis1 | 3,936100554 | 14,90 | <.0001 |
| dosis1*dosis1 | 0,019743076 | 12,71 | <.0001 |
| R-cuadrado | Coef Var | Raíz MSE | Media |
| 0,915212 | 11,42832 | 0,915009 | 8,006507 |
Anexo No. 53: ANAVA de regresión lineal para panojas m²

Fuente de la varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>1</td>
<td>475847,899</td>
<td>475847,899</td>
<td>28,48</td>
<td><,.0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>568034,796</td>
<td>16706,906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>1043882,695</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente de la varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>475847,899</td>
<td>475847,899</td>
<td>28,48</td>
<td><,.0001</td>
</tr>
</tbody>
</table>

Parámetro

| Parámetro | Estimador | Error | Valor t | Pr > |t| |
|-----------|-----------------|----------------|---------|------|---|
| Término ind. | 536,7379192 | 34,78006631 | 15,43 | <,.0001 |
| | 0,3252767 | 0,06094904 | 5,34 | <,.0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,455844</td>
<td>18,93955</td>
<td>129,2552</td>
<td>682,4619</td>
</tr>
</tbody>
</table>
Anexo No. 54: ANAVA de regresión lineal para granos totales panoja

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>6138,54702</td>
<td>6138,54702</td>
<td>53,46</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>3904,05541</td>
<td>114,82516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10042,60243</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>6138,54702</td>
<td>53,46</td>
<td><,0001</td>
</tr>
</tbody>
</table>

| Parámetro | Error | Valor t | Pr > |t| |
|------------|-------|---------|------|---|
| Término ind. | | | | |
| dosis1 | 2,88337363 | 17,91 | <,0001 |
| | 0,00505286 | 7,31 | <,0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raiz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,611251</td>
<td>15,71242</td>
<td>10,71565</td>
<td>68,19861</td>
</tr>
</tbody>
</table>
Anexo No. 55: ANAVA de regresión lineal para granos llenos panoja

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>1</td>
<td>7021.66232</td>
<td>7021.66232</td>
<td>72.63</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>3287.21456</td>
<td>96.68278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>10308.87687</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>7021.66232</td>
<td>7021.66232</td>
<td>72.63</td>
<td><.0001</td>
</tr>
</tbody>
</table>

| Parámetro | Dosis1 | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------|--------|-----------|----------------|---------|------|------|
| Término ind. dosis1 | 39,18572404 | 2,64579969 | 14,81 | <.0001 |
| | 0,03951289 | 0,00463653 | 8,52 | <.0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,681128</td>
<td>17,28454</td>
<td>9,832740</td>
<td>56,88750</td>
</tr>
</tbody>
</table>

Anexo No. 56: ANAVA de regresión cuadrática para granos llenos panoja

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>2</td>
<td>7885,85292</td>
<td>3942,92646</td>
<td>53,7</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>2423,02396</td>
<td>73,42497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>10308,87687</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>2654,336020</td>
<td>2654,336020</td>
<td>36,15</td>
<td><.0001</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td>1</td>
<td>864,190601</td>
<td>864,190601</td>
<td>11,77</td>
<td>0.016</td>
</tr>
</tbody>
</table>

| Parámetro | Dosis1 | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------|--------|-----------|----------------|---------|------|------|
| Término ind. dosis1 | 36,11250000 | 2,47361019 | 14,60 | <.0001 |
| | 0,08744309 | 0,01454352 | 6,01 | <.0001 |
| | -0,00005650 | 0,00001647 | -3,43 | 0.016 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,764958</td>
<td>15,06278</td>
<td>8,568837</td>
<td>56,88750</td>
</tr>
</tbody>
</table>
Anexo No. 57: ANAVA de regresión lineal para peso de mil granos

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>DF 1</td>
<td>2,78011157</td>
<td>2,78011157</td>
<td>8,61</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>10,97544399</td>
<td>0,32280718</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>13,75555556</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF 1</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>2,78011157</td>
<td>2,78011157</td>
<td>8,61</td>
<td>0,0059</td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-------------|--------------------|----------------------|----------|------|---|
| Término ind.| 26,45887978 | 0,15288117 | 173,07 | <,0001 | |
| dosis1 | 0,00078623 | 0,0026791 | 2,93 | 0,0059 | |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,202108</td>
<td>2,119126</td>
<td>0,568161</td>
<td>26,81111</td>
</tr>
</tbody>
</table>
Anexo No. 58: ANAVA de regresión lineal para porcentaje de esterilidad

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>1</td>
<td>993,940060</td>
<td>993,940060</td>
<td>19,17</td>
<td>0,0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>1763,061514</td>
<td>51,854750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>2757,001574</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>993,940060</td>
<td>993,940060</td>
<td>19,17</td>
<td>0,0001</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td>1</td>
<td>839,0183598</td>
<td>839,0183598</td>
<td>20,97</td>
<td><,0001</td>
</tr>
</tbody>
</table>

| Parámetro | Error estándar | Valor t | Pr > |t| |
|--------------------|----------------|---------|------|----|
| Término ind. dosis1| -0,01486617 | 0,00339557 | -4,38 | 0,0001 |
| dosis1 | 23,77701498 | 1,93765596 | 12,27 | <,0001 |

R-cuadrado 0,360515 Coef Var 42,06950 Raíz MSE 7,201024 Media 17,11697

Anexo No. 59: ANAVA de regresión cuadrática para porcentaje de esterilidad

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>2</td>
<td>1436,410801</td>
<td>718,205400</td>
<td>17,95</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>1320,590773</td>
<td>40,017902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>2757,001574</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>839,0183598</td>
<td>839,0183598</td>
<td>20,97</td>
<td><,0001</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td>1</td>
<td>442,4707407</td>
<td>442,4707407</td>
<td>11,06</td>
<td>0,0022</td>
</tr>
</tbody>
</table>

| Parámetro | Error estándar | Valor t | Pr > |t| |
|--------------------|----------------|---------|------|----|
| Término ind. dosis1| -0,04916243 | 0,01073680 | -4,58 | <,0001 |
| dosis1 | 25,97604791 | 1,82615037 | 14,22 | <,0001 |
| dosis1*dosis1 | -0,00004043 | 0,00001216 | 3,33 | 0,0022 |

R-cuadrado 0,521005 Coef Var 36,95730 Raíz MSE 6,325970 Media 17,11697
Anexo No. 60: ANAVA de regresión lineal para porcentaje de blanco total

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>9,71847905</td>
<td>9,71847905</td>
<td>24,48</td>
<td>0,0001</td>
</tr>
<tr>
<td>Error</td>
<td>13,49790984</td>
<td>0,39699735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23,21638889</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>9,71847905</td>
<td>24,48</td>
<td>0,0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------------|-----------|----------------|---------|------|---|
| Término ind. dosis1 | 68,17199454 | 0,16954157 | 402,10 | <,0001|
| | 0,00147000 | 0,00029711 | 4,95 | <,0001|

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,418604</td>
<td>0,91403</td>
<td>0,630077</td>
<td>68,83056</td>
</tr>
</tbody>
</table>

Anexo No. 61: ANAVA de regresión cuadrática para porcentaje de blanco total

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>11,69555556</td>
<td>5,84777778</td>
<td>16,75</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>11,52083333</td>
<td>0,34911616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23,21638889</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>4,91435801</td>
<td>14,08</td>
<td>0,0007</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td>1,97707650</td>
<td>5,66</td>
<td>0,0233</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-----------------|-----------|----------------|---------|------|---|
| Término ind. dosis1 | 68,02500000 | 0,17056674 | 398,82 | <,0001|
| | 0,00376254 | 0,00100284 | 3,75 | 0,0007|
| | -0,00000270| 0,000000114| -2,38 | 0,0233|

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,503763</td>
<td>0,858428</td>
<td>0,590861</td>
<td>68,83056</td>
</tr>
</tbody>
</table>
Anexo No. 62: ANAVA de regresión lineal para porcentaje de grano entero

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>417,730020</td>
<td>417,730020</td>
<td>17,55</td>
<td>0,0002</td>
</tr>
<tr>
<td>Error</td>
<td>809,177480</td>
<td>23,799338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1226,907500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelos</td>
<td>417,730020</td>
<td>17,55</td>
<td>0,0002</td>
</tr>
<tr>
<td>Error</td>
<td>23,799338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1226,907500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Error estándar | Valor t | Pr > |t| |
|------------|----------------|---------|------|---|
| Término ind. | 1,31269802 | 43,99 | <,0001 |
| Dosis1 | 0,00230039 | 4,19 | 0,0002 |

Anexo No. 63: ANAVA de regresión cuadrática para porcentaje de grano entero

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>543,851667</td>
<td>271,925833</td>
<td>13,14</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>683,055833</td>
<td>20,698662</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1226,907500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelos</td>
<td>271,925833</td>
<td>13,14</td>
<td><,0001</td>
</tr>
<tr>
<td>Error</td>
<td>20,698662</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1226,907500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Error estándar | Valor t | Pr > |t| |
|------------|----------------|---------|------|---|
| Término ind. | 1,31335009 | 43,07 | <,0001 |
| Dosis1 | 0,00772180 | 3,62 | 0,00010 |
| Dosis1*Dosis1 | 0,00000874 | -2,47 | 0,0189 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,340474</td>
<td>7,861082</td>
<td>4,878456</td>
<td>62,05833</td>
</tr>
</tbody>
</table>
Anexo No. 64: ANAVA de regresión lineal para porcentaje de yeso

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 1</td>
<td>71,2861111</td>
<td>71,2861111</td>
<td>13,68</td>
<td>0,0008</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 34</td>
<td>177,1681808</td>
<td>5,2108288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 35</td>
<td>248,4542920</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 1</td>
<td>71,2861111</td>
<td>13,68</td>
<td>0,0008</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 34</td>
<td>5,2108288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 35</td>
<td>248,4542920</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Error | Valor t | Pr > |t| |
|-----------|-------|---------|------|---|
| Término ind. | | | | |
| dosis1 | | | | |
| Estimador | 7,260643972 | 11,82 | <,0001 | |
| Error | 0,61423675 | | | |
| Valor t | -3,70 | | | |
| Pr > |t| | 0,0008 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,286918</td>
<td>41,67809</td>
<td>2,282724</td>
<td>5,477036</td>
</tr>
</tbody>
</table>

Anexo No. 65: ANAVA de regresión cuadrática para porcentaje de yeso

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 2</td>
<td>85,9497450</td>
<td>42,9748725</td>
<td>8,73</td>
<td>0,0009</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 33</td>
<td>162,5045469</td>
<td>4,9243802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 35</td>
<td>248,4542920</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 2</td>
<td>42,9748725</td>
<td>8,73</td>
<td>0,0009</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 33</td>
<td>4,9243802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF 35</td>
<td>248,4542920</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Parámetro | Error | Valor t | Pr > |t| |
|-----------|-------|---------|------|---|
| Término ind. | | | | |
| dosis1 | | | | |
| Estimador | 7,6609646709 | 11,96 | <,0001 | |
| Error | 0,64059739 | | | |
| Valor t | -2,71 | | | |
| Pr > |t| | 0,0105 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,345938</td>
<td>40,51634</td>
<td>2,219094</td>
<td>5,477036</td>
</tr>
</tbody>
</table>
Anexo No. 66: ANAVA de regresión lineal para porcentaje de mancha

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>0,31275455</td>
<td>0,31275455</td>
<td>27,53</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>0,38622951</td>
<td>0,01135969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0,69898406</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>0,31275455</td>
<td>27,53</td>
<td><.0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|-------------|----------------|----------------|---------|------|---|
| Término ind.| 0,3219037874 | 0,02867911 | 11,22 | <.0001 |
| | -0,0002637064 | 0,00005026 | -5,25 | <.0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,447442</td>
<td>52,30669</td>
<td>0,106582</td>
<td>0,203763</td>
</tr>
</tbody>
</table>
Anexo No. 67: ANAVA de regresión lineal para control de capín

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>1</td>
<td>151,6065574</td>
<td>151,6065574</td>
<td>139,72</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>36,8934426</td>
<td>1,0851013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>188,5000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>151,6065574</td>
<td>151,6065574</td>
<td>139,72</td>
<td><.0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|------------|-----------|----------------|---------|------|--|
| Término ind. | 0,7322404372 | 0,28029640 | 2,61 | 0,0133 |
| dosis1 | 0,0058060109 | 0,00049120 | 11,82 | <.0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,804279</td>
<td>31,25046</td>
<td>1,041682</td>
<td>3,333333</td>
</tr>
</tbody>
</table>

Anexo No. 68: ANAVA de regresión cuadrática para control de capín

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Suma de cuadrados</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>2</td>
<td>188,1816667</td>
<td>94,0908333</td>
<td>9753,92</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>0,3183333</td>
<td>0,0096465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>188,5000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>Tipo III SS</th>
<th>Cuadrado de la media</th>
<th>F-Valor</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosis1</td>
<td>1</td>
<td>85,20152716</td>
<td>85,20152716</td>
<td>8832,41</td>
<td><.0001</td>
</tr>
<tr>
<td>dosis1*dosis1</td>
<td>1</td>
<td>36,57510929</td>
<td>36,57510929</td>
<td>3791,56</td>
<td><.0001</td>
</tr>
</tbody>
</table>

| Parámetro | Estimador | Error estándar | Valor t | Pr > |t| |
|------------|-----------|----------------|---------|------|--|
| Término ind. | 0,1000000000 | 0,02835264 | 3,53 | 0,0013 |
| dosis1 | 0,0156664738 | 0,00016670 | 93,98 | <.0001 |
| dosis1*dosis1 | -0,0000116243 | -0,00000 | -61,58 | <.0001 |

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef Var</th>
<th>Raíz MSE</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,998711</td>
<td>2,946493</td>
<td>0,098216</td>
<td>3,333333</td>
</tr>
</tbody>
</table>