
PEDECIBA Informática

Uruguay

On the Formalisation of

the Metatheory of the Lambda Calculus

and Languages with Binders

Ernesto Copello
copello@ort.edu.uy

Tesis presentada en cumplimiento parcial de los
requisitos para el grado de Doctor en Informática

Pedeciba Informática

Montevideo, Uruguay, Agosto de 2017

Directores de Tesis: Dra. Nora Szasz
Dr. Álvaro Tasistro

Universidad ORT Uruguay

On the Formalisation of
the Metatheory of the Lambda Calculus
and Languages with Binders

Ernesto Copello

ISSN 0797�6410
Tesis de Doctorado en Informática
Reporte Técnico RT 17-XX
PEDECIBA
Montevideo, Uruguay, Agosto de 2017

Resumen

Este trabajo trata sobre el razonamiento formal veri�cado por computadora involucrando lengua-
jes con operadores de ligadura.

Comenzamos presentando el Cálculo Lambda, para el cual utilizamos la sintaxis histórica, esto es,
sintaxis de primer orden con sólo un tipo de nombres para las variables ligadas y libres. Primera-
mente trabajamos con términos concretos, utilizando la operación de sustitución múltiple de�nida
por Stoughton [61] como la operación fundamental sobre la cual se de�nen las conversiones alfa
y beta. Utilizando esta sintaxis desarrollamos los principales resultados metateóricos del cálculo:
los lemas de sustitución, el teorema de Church-Rosser y el teorema de preservación de tipo (Sub-
ject Reduction) para el sistema de asignación de tipos simples. En una segunda formalización
reproducimos los mismos resultados, esta vez basando la conversion alfa sobre una operación
más sencilla, que es la de permutación de nombres. Utilizando este mecanismo, derivamos prin-
cipios de inducción y recursión que permiten trabajar identi�cando términos alfa equivalentes,
de modo tal de reproducir la llamada convención de variables de Barendregt [4]. De este modo,
podemos imitar las demostraciones al estilo �lápiz y papel� dentro del riguroso entorno formal
de un asistente de demostración.

Como una generalización de este último enfoque, concluimos utilizando técnicas de programación
genérica para de�nir una base para razonar sobre estructuras genéricas con operadores de lig-
adura. De�nimos un universo de tipos de datos regulares con información de variables y op-
eradores de ligadura, y sobre éstos de�nimos operadores genéricos de formación, eliminación
e inducción. También introducimos una relación de alfa equivalencia basada en la operación
de permutación y derivamos un principio de iteración/inducción que captura la convención de
variables anteriormente mencionada. A modo de ejemplo, mostramos cómo de�nir el Cálculo
Lambda y el sistema F en nuestro universo, ilustrando no sólo la reutilización de las pruebas
genéricas, sino también cuán sencillo es el desarrollo de nuevas pruebas en estos casos.

Todas las formalizaciones de esta tesis fueron realizadas en Teoría Constructiva de Tipos y
veri�cadas utilizando el asistente de pruebas Agda [46].

Palabras Clave: Lenguajes de Programación, Metateoría Formal, Cálculo Lambda, Progra-
mación Genérica, Teoría de Tipos

Abstract

This work is about formal, machine-checked reasoning on languages with name binders.

We start by considering the λ-calculus using the historical (�rst order) syntax with only one
sort of names for both bound and free variables. We �rst work on the concrete terms taking
Stoughton's multiple substitution operation [61] as the fundamental operation upon which the
α- and β-conversion are de�ned. Using this syntax we reach well-known meta-theoretical results,
namely the Substitution lemmas, the Church-Rosser theorem and the Subject Reduction theorem
for the system of assignment of simple types. In a second formalisation we reproduce the same
results, this time using an approach in which α-conversion is de�ned using the simpler operation
of name permutation. Using this we derive induction and recursion principles that allow us to
work by identifying terms up to α-conversion and to reproduce the so-called Barendregt's variable
convention [4]. Thus, we are able to mimic �pencil and paper� proofs inside the rigorous formal
setting of a proof assistant.

As a generalisation of the latter, we conclude by using generic programming techniques to de�ne
a framework for reasoning over generic structures with binders. We de�ne a universe of regular
datatypes with variables and binders information, and over these we de�ne generic formation,
elimination, and induction operations. We also introduce an α-equivalence relation based on
the swapping operation, and are able to derive an α-iteration/induction principle that captures
Barendregt's variable convention. As an example, we show how to de�ne the λ-calculus and
System F in our universe, and thereby we are able to illustrate not only the reuse of the generic
proofs but also how simple the development of new proofs becomes in these instances.

All formalisations in this thesis have been made in Constructive Type Theory and completely
checked using the Agda proof assistant [46].

Keywords: Programming Languages, Formal Metatheory, Lambda Calculus, Generic Program-
ming, Type Theory

Acknowledgments

First of all, I wish to thank my supervisors Nora Szasz and Álvaro Tasistro for their invaluable
contribution which made possible this work, and for the patience shown while reviewing the
many drafts of this thesis, when I had lost mine.

I want to thank Daniel Fridlender and Miguel Pagano for the key discussions and many con-
tributions throughout the work done in the formalisation of the Church-Rosser theorem in the
article presented in chapter 3.

I would also like to thank Ana Bove and Maribel Fernandez for correcting many of my mistakes,
and their feedback on the Agda code and drafts of the paper presented in chapter 4.

This work was supported by a PhD fellowship from Agencia Nacional de Investigación e Inno-
vación (ANII), and a research assistant position at Universidad ORT: thanks for both institutions.
I also want to thank the Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) within
which this PhD was held.

Finally, I want to extend my gratitude to my family.

Contents

1 Introduction 1

1.1 Context . 1
1.2 The Problem . 2
1.3 Structure of this Thesis . 6

2 State of the Art 7

2.1 Nominal Syntax . 8
2.2 Nameless Syntax . 11
2.3 Higher Order Abstract Syntax . 13
2.4 Conclusions . 15

3 Stoughton's Multiple Substitution 17

3.1 Introduction . 17
3.2 Substitution . 21
3.3 Alpha-conversion . 27
3.4 Beta-Reduction and the Church-Rosser Theorem 30
3.5 Assignment of Simple Types . 35
3.6 Conclusions . 38

4 Substitution Lemmas 41

4.1 Introduction . 41
4.2 Infrastructure . 43
4.3 Alpha-Structural Induction and Recursion Principles 45
4.4 Applications in Meta-Theory . 47
4.5 Conclusions . 50
4.6 Appendix: Iteration/Recursion Applications . 51

5 Church-Rosser and Subject Reduction 55

5.1 Introduction . 55
5.2 Preliminaries . 56
5.3 Alpha Induction Principles . 59
5.4 Parallel Beta Reduction . 61
5.5 Assignment of Simple Types . 68
5.6 Conclusions . 71

6 Generic Binding Framework 73

6.1 Introduction . 73
6.2 Related work . 74

i

ii CONTENTS

6.3 Regular Tree Universe with Binders . 76
6.3.1 Map and Fold . 79
6.3.2 Primitive Induction . 81
6.3.3 Fold with Context Information . 83

6.4 Name Swapping . 84
6.5 Alpha Equivalence Relation. 86

6.5.1 Alpha Fold . 90
6.5.2 Alpha Induction Principle . 91

6.6 Codi�cation of a BVC proof technique. 93

7 Conclusions 99

CHAPTER 1

Introduction

1.1 Context

Writing a precise semantic de�nition of a full-scale programming language is a daunting task.
However, considering the potential bene�ts for both language users and implementers, it is
surprising how few of such e�orts can be found reported in the literature. Computer programs are
increasingly being required to withstand rigorous analysis of their properties, and the speci�cation
of programming languages constitutes the basis upon which the understanding of particular
programs and their properties may rest. In particular, the properties we would like our programs
to warrant intrinsically depend on the proper working of compilers. Such proper working can only
be granted with certainty by employing a precise de�nition of the compiled language. Therefore,
we need to carefully address the way we specify and reason about programming languages.

After 27 years of its publication, Standard ML [42] remains one of the few examples of a pro-
gramming language that is precisely de�ned while still being designed for large scale industrial
projects. Most of its speci�cation can be found in several articles, typically written in a com-
bination of natural language and speci�c mathematical notation. Although papers of such kind
are, of course, written by experts, they often do contain errors. Even when considering small
programming languages there exist examples of formalisation errors. For example, in the original
presentation of Session Types [31], the typing relation is not preserved under α-conversion. Only
after 10 years was this �aw discovered and �xed by Yoshida and Vasconcelos in [69]. This issue in
particular was the main motivation of my Master's thesis [12,63], which consisted on the partial
certi�cation of a type checker for this language.

To prevent issues as the former from arising, while still allowing languages to scale up, some degree
of automated checking is required. Proof assistants like Coq [39], Isabelle [44] and Agda [47]
make such checking possible, providing the user with a logical framework where soundness can
be veri�ed, and in some cases also with a programming language. The programming language
embedded in the proof assistant enables the user to reuse the formalised semantics to certify the
language's compiler. Examples of this can be found in [9] for the simply-typed lambda calculus,
and of course in the impressive case of CompCert [35], a certi�ed C compiler intended to be
used in life-critical and mission-critical software written in C, meeting high levels of assurance by
using the Coq proof assistant for both programming the compiler, and proving its correctness.

Proof assistants help with the burden of proving the soundness of language formalisations, but

1

2 CHAPTER 1. INTRODUCTION

they introduce encoding problems. In particular, the problem of representing and reasoning
about structures with binders and α-equivalent terms is central to formailising the meta-theory
of some relevant programming languages. The formalisation of this problem in a proof assistant
is a complex task. This becomes clear just by checking out how many techniques and choices
in the formulation of the basic de�nitions have been developed in the past decades, while at the
same time none of them has been widely adopted. This complexity arises even in the simplest
language with the aforementioned characteristics, i.e. the λ-calculus.

Indeed, in order to compare the so many di�erent approaches to the formalisation of the meta-
theory of programming languages and as a way of measuring the adoption of proof assistants
by the research community, the POPLmark challenge [3] proposes a set of well-de�ned problems
based on a call-by-value variant of System F [26], enriched with records, record subtyping, and
record patterns. Central aspects in this challenge are variable bindings and complex inductions
over the abstract syntax with binders. They also propose that the successful solutions should be
evaluated against the following criteria:

• Reasonable overhead: the overhead cost in the formalisation should not be prohibitive, and
intrinsic to the formalised problem, not to the chosen technique.

• Transparency: the formalised proofs should be human-readable, and not too radically
di�erent from classic pen-and-paper proofs. In this way a reasonable entry cost is paid by
a reader not familiar with the proof assistant to understand the proof details.

• Cost of entry: the infrastructure should be usable by non theorem prover experts.

In addition to the previous features, the challenge structure implicitly adds an escalation factor,
as its problems have several sub-parts, each one adding more features to the target language, by
checking how the proposed solution can be re-used to solve them.

In this line of work, we study techniques to reason over abstract syntax trees with binders. In
the �rst chapters of this thesis we mainly use λ-calculus as a minimal primigenial language over
which to experiment and compare formalisations. In spite of the simplicity of the language,
subtle issues arise in its formalisation, and it is precisely simplicity that enables us to study
them in isolation. In a later chapter we extend the obtained results to general languages with
binders.

1.2 The Problem

The λ-calculus was introduced by Church [10] to formalise the concept of function as rule of
computation. Given a denumerable set of names (variables) V , the set of the λ-terms is de�ned
inductively as follows:

De�nition 1 (λ-calculus terms).

M,N ::= x | MN | λx.M

That is: there are variables, application, and abstraction of a variable name over a term. An
occurrence of a variable x in a term M is called bound if it is in the scope of an abstraction λx
in M , binding (or binder) if it is the x in a λx, and free otherwise. We denote fv(M) the set of
free variables of a λ-term M . Although later many other formulations appeared, in this work we
stick to the historical one, with one sort of names to serve both as free and bound variables. It is

1.2. THE PROBLEM 3

precisely one contention of this thesis that it is feasible and reasonable to develop the metatheory
of the λ-calculus using this syntax.

Such formulation brings about two di�erent issues:

• On the one hand side, bound names denote parameters for which other terms are substi-
tuted in computations, i. e. (λx.M) N computes to M [x := N] (β-contraction rule). The
right-hand side term corresponds to the substitution of the term N for the free occurrences
of the abstracted variable x in the abstraction body M . Because bound names in M may
coincide with free names in N , we have what we shall call the substitution issue, i.e. that
substitution of terms for real variables has to be performed in some sophisticated way so
as to avoid capture of names by binders.

• On the other hand, because of the existence of bound names, there is what we shall call
the α-conversion issue, i.e. that terms di�ering only in the choice of their bound names
should be functionally indistinguishable.

The Substitution Issue

Although the aforementioned syntax is the one used from the very beginning of the λ-calculus
in the '30s [10], it was not until 1958 that a correct and detailed de�nition of substitution was
given by Curry and Feys [16]:

De�nition 2 (Curry and Feys's Substitution Operation).

y[x := N] =

{
N if x = y
y otherwise

(MP)[x := N] = M [x := N]P [x := N]

(λy.M)[x := N] =



λy.M if x 6∈ fv(λy.M)

λy.(M [x := N]) if x ∈ fv(λy.M)∧
y 6∈ fv(N)

λz.(M [y := z][x := N]) otherwise, with the �rst z
s.t.z 6∈ {x} ∪ fv(M) ∪ fv(N)

The �nal clause performs a binder renaming to prevent any free occurrences of y in N from
becoming bound by the considered abstraction, in other words, to prevent any variable capture.

This de�nition is not structurally recursive; rather, the recursion is on the length of the term
wherein the substitution is performed. But, to ascertain that the length of the recursive calls
always decreases, a proof has to be given, which must therefore be simultaneous to the justi�-
cation of the well-foundedness of the de�nition. Also consequently, proofs of properties of the
substitution have generally to be conducted on the length of terms. This may explain why this
de�nition has not been extensively used in formalisations.

4 CHAPTER 1. INTRODUCTION

The α-Conversion Issue

We can observe in the β-contraction rule (λx.M) N .β M [x := N] that any particular variable
name selection �x in this case� is irrelevant to the �nal substitution result. That is, bound names
merely identify places for which terms are to be substituted. For example, we can note that the
terms λx.x and λy.y represent the same (identity) function, as applying a β-contraction to any
λ-term, returns it inaltered in both cases.

Indeed, the syntax of the λ-calculus, presented at the beginning of this section has distinct terms
representing the same function objects, even at the syntactic level. This problem is addressed by
the de�nition of an α-equivalence relation which relates terms representing the same function.

Curry and Feys in [16] properly de�ne the α-conversion relation as the re�exive, transitive and
compatible with the syntactic constructors closure of the following α-contraction relation:

De�nition 3 (Curry and Feys' α-contraction).

y 6∈ fv(M)

λy.M [x := y] .α λx.M

The free variable premise grants that y is fresh enough not to bind any preexisting free variable
in the term M .

Which Comes First?

Curry and Feys' constitute what we may call the historical approach to treating the two aforemen-
tioned issues of the metatheory of the λ-calculus. It namely consists in de�ning the α-conversion
relation in terms of substitution. Reasoning with substitution becomes of course ubiquitous in
the development of the meta-theory. Using Curry and Feys' de�nition forces to employ induc-
tion on the length of terms instead of the more natural induction on the syntax, and it also
happens that a mismatch arises between natural inductive de�nitions of fundamental relations
and the non-structurally inductive structure of the substitution operation. These inconveniences
led Stoughton [61] in 1988 to propose a simultaneous multiple variable substitution operation
de�ned by simple structural recursion.

In chapter 3 we carry out a formalisation of Stoughton's substitution de�nition, which allows
us to develop the fundamental results of the metatheory of the λ-calculus, namely the Church-
Rosser theorem and the Subject Reduction theorem for the system of assignment of simple types
in a completely formal way within reasonable cost boundaries. This is the �rst contribution of
this thesis.

On the other hand, a whole family of alternatives is associated to the idea that, contrary to the
historical standpoint, the issue of α-conversion is actually more fundamental than that of the
de�nition of substitution. Or, more concretely, that the issue of how to reason and compute
modulo α-conversion should be solved �rst so as to yield, among other things, a su�ciently
abstract de�nition of substitution.

A prominent illustration of this practice is given in Barendregt's book [4]. For instance, the
following are excerpts from this work:

�2.1.12 CONVENTION. Terms that are α-congruent are identi�ed [on a syntactic level]�

1.2. THE PROBLEM 5

�2.1.13 VARIABLE CONVENTION. If M1, . . . ,Mn occur in a certain mathematical context
(e.g., de�nition, proof), then in these terms all bound variables are chosen to be di�erent from
the free variables.�

�2.1.14. MORAL. Using conventions 2.1.12 and 2.1.13 one can work with λ-terms in the naive
way.�

De�nition 4 (Barendregt's Substitution).

x [x := N] ≡ N
y [x := N] ≡ y if x 6≡ y
(M1M2) [x := N] ≡ (M1[x := N])(M2[x := N])
(λy.M1) [x := N] ≡ λy.(M1[x := N])

�In the fourth clause it is not needed to say �provided that y 6≡ x and y 6∈ fv(N)�. By the variable
convention this is the case.�

This convention has received a standard name, namely the Barendregt Variable Convention,
which we will denote by BVC. It conveniently establishes that all bound variables can be chosen
to be di�erent from the free variables in certain mathematical context (e.g., de�nition, proof),
and assumes α-convertible terms are syntactically equal. When working under this convention,
Barendregt considers λ-terms as representatives of their equivalence classes, interpreting sub-
stitution as an operation on the α-equivalence classes of terms. Substitution is performed on
representatives, provided that the bound variables are named properly, as the previous variable
convention dictates. If we call real calculus the one that identi�es α-convertible terms, and raw
calculus the one working on concrete terms, then we can say that Barendregt works at the real
calculus level, but using convenient raw representatives.

Now, in Barendregt's book two ways are proposed to formally justify the BVC. One is to work
with de Bruijn indices, which eliminates bound names and therefore α-conversion altogether, as
we will see in the next chapter. As we stated before, we are interested in pursuing a nominal
approach to syntax, so this alternative is not satisfactory to us. The second justi�cation given
by Barendregt is based on Curry and Feys' de�nition of substitution, and their proof that sub-
stitution is compatible with α-conversion. It follows that substitution can be interpreted as an
operation on α-classes of terms, i.e., on terms of the real calculus. This path is not amenable
to full formalisation due to the intricate formulation of the substitution de�nition, as already
shown.

However, if α-conversion is to be granted a more fundamental status than that of substitution,
it should not be de�ned in terms of the latter �and indeed it need not be, since we are only
replacing a name by another name, and not by a whole term. One possibility is to use name
permutations, which in turn are de�ned as �nite sequences of name swappings. These were
introduced in [24, 53] following ideas of Fraenkel and Mostowski's set theory, and allow for an
implementation of α-conversion with convenient properties.

The second contribution of this thesis is a justi�cation of the BVC in these terms. Speci�cally,
we are able to provide principles of induction and recursion for the real calculus implementing
the BVC in Constructive Type Theory and deriving them from just simple structural induction
on raw terms. Equality remains the simple de�nitional one, and we do not perform any kind
of quotient on terms. This result is presented in chapter 4. The principles have to be extended
in order to cope with induction on relations which allows us to show, in chapter 5, how it is

6 CHAPTER 1. INTRODUCTION

possible within this approach to reach the fundamental theorems of Church-Rosser and Subject
Reduction.

1.3 Structure of this Thesis

In the next chapter we survey the state of the art in the mechanisation of the meta-theory
of formal languages with binders, especially the λ-calculus. We classify the main approaches
developed to represent and reason about these languages, i.e., nominal, nameless and higher-
order abstract syntax, and study the most relevant works within each of them. As we are
interested in the many proof subtleties, we pay special attention to works that are mechanised
using proof assistants.

In chapter 3 we present the formalisation of the λ-calculus in Constructive Type Theory based
on Stoughton's multiple substitution [61]. We prove that this substitution is α-compatible, the
Church-Rosser theorem, and the Subject Reduction theorem for the system of assignment of sim-
ple types. The whole development was formally checked using the Agda proof assistant [47]. This
chapter consists in the article �Formal Metatheory of the Lambda Calculus Using Stoughton's
Substitution�, published in Theoretical Computer Science [14].

In chapters 4 and 5 we present the formalisation of the λ-calculus in Constructive Type Theory
based on the variable swapping operation. With this formalisation we are able to derive induction
and recursion principles at the real calculus level. These principles aim to reproduce the use
of the BVC in pen-and-paper works, while trying to hide all its complexity in the rigorous
context of the Agda proof assistant. Using the derived principles we were able to reproduce the
same fundamental meta-theoretical results for the λ-calculus as we did in the preceding chapter.
Chapter 4 consists in the article �Alpha-Structural Induction and Recursion for the Lambda
Calculus in Constructive Type Theory�, published in Electronic Notes in Theoretical Computer
Science [13]. Part of Chapter 5 has been accepted for publication in the 12th Workshop on
Logical and Semantic Frameworks with Applications (LSFA 2017).

In chapter 6, we present the third contribution of the thesis: We extend the previous chap-
ters results, applying generic programming techniques to address the formalisation of generic
structures with binders. We de�ne a universe of regular data types with variable binding infor-
mation, and over these we de�ne generic formation, elimination, and induction operators. We
also introduce an α-equivalence relation based on the swapping operation, and are able to derive
α-iteration/induction principles that capture the BVC. As an example, we show how to de�ne
the λ-calculus and System F in our universe, exhibiting not only the reuse of the generic proofs
but also how simple the development of new proofs becomes in these instances.

Finally, in chapter 7 we present our overall conclusions, �nal remarks and further work.

CHAPTER 2

State of the Art

In this chapter we present the state of the art in the formalisation of the meta-theory of lan-
guages with binders, especially within the context of proof assistants. We �rst classify the main
approaches developed to represent and reason about such languages and then we study the most
relevant works written in each of these lines:

Nominal Syntax

Within this approach variables are named with identi�ers. An α-conversion relation is de�ned to
introduce the equivalence of expressions via renaming of their bound variables. We can identify
the following variations:

• Historical: All the variables belong to the same domain of variables.

• à la Frege: Free and bound variables belong to di�erent domains.

• Nominal Techniques: The swapping operation is used to de�ne the α-conversion

Nameless Syntax

Within this approach abstractions are nameless. A bound variable occurrence is represented
by the number of binders that are in the scope between its occurrence and its corresponding
binder. Because of this, no α-conversion notion is needed in this formulation, and α-equivalent
terms are syntactically identical. Free variables are represented as indices denoting binders out
of the scope. A variation of this syntax combines nominal syntax for free variables and indices
for bound variables.

Higher-Order Abstract Syntax

In this approach, meta-language abstractions are used to represent abstractions in the introduced
language structure. In this way, the substitution operation is handled at the meta-level.

In the following sections we will introduce the key aspects of each one of these approaches.

7

8 CHAPTER 2. STATE OF THE ART

2.1 Nominal Syntax

In this section we study �rst order formalisations of the λ-calculus using named variables as done
in most pen-and-paper classical works.

Several solutions were proposed to overcome the problems enumerated in the previous chapter
for the nominal syntax. In particular, addressing substitution, Stoughton [61] presented in 1988 a
simultaneous multiple variable substitution operation. It is de�ned by simple structural recursion
on raw terms, following the standard syntax, and an interesting theory arises concerning α-
conversion as we will explain in the next chapter. Moreover, further simpli�cation is achieved
by not distinguishing so many cases when considering the substitution in the abstraction case,
that is, by merging the second and third sub-cases of the abstraction case in Curry's de�nition
(de�nition 2), performing a uniform renaming of the bound variables, even though this renaming
is not necessary when no variable capture occurs. Possibly the most interesting consequence of
this method of uniform renaming is that the identity substitution normalizes terms with respect
to α-conversion. This approach has been formalised by Lee [33] in the Coq proof assistant. In his
work, Lee represents the multiple substitutions as total functions from variables to terms (the
same is done in Stoughton's work), and de�nes the propositional identity of substitutions as their
extensional equivalence. In the next chapter we present a formalisation of Stoughton's syntax in
Constructive Type Theory which has been fully machine-checked using the system Agda [46]. In
this formalisation we use the propositional identity to re�ect the de�nitional, and thus decidable,
equality. We also represent the multiple substitutions as functions, but avoid using such fully
extensional equivalence.

McKinna and Pollack [40] syntactically distinguish free from bound variables, calling them pa-
rameters and variables respectively. This approach was suggested by several authors: Frege [22]
in 1879, Prawitz [56] and Gentzen [25] in 1965, and Coquand [15] in 1991. McKinna and Pol-
lack developed a substantial work in the Lego proof assistant, including the Church-Rosser and
standardization theorems for β-reduction, and the basic theory of Pure Type Systems, leading to
the strengthening theorem and type checking algorithms for this system. This modi�ed syntax
comes with some overhead: two substitution operations must be de�ned, one for parameters and
another one for variables. These de�nitions do not prevent variable capture, so some precondi-
tions are required to use them in a safe way. In order to restrict the sort of bound variables to
occur in bound positions only, they introduce a well-formedness predicate over terms prescribing
when this is the case. In fact, it is this predicate, which is de�ned recursively over the �rst order
abstract syntax terms, that gives rise to the proof principles this work employs. In the spirit of
Stoughton's multiple substitution, they introduce a multiple renaming operation over parame-
ters. They notice that bijective renamings are useful but surprisingly di�cult to construct, so
they �nally introduce the swapping operation over parameters. Proofs with statements about
change of names are performed by induction on the length of the terms, as expected.

In 2001, Peter Homeier [30] tried to recreate the BVC in the Isabelle/HOL proof assistant, using a
multiple substitution to prove the Church-Rooser theorem. His work de�nes α-conversion without
using substitution, in an inductive de�nition with only three syntax directed rules. Homeier uses
the Isabelle's HOL package to obtain the type of α-equivalence classes. This module introduces
a mapping function between raw terms and α-equivalence classes, and the property that if two
raw terms are α-convertible then the corresponding α-equivalence classes are structurally equal.
We suspect that to be able to prove the previous property, this package hides some kind of de
Bruijn indices representation, but this translation is far from being transparent. Moreover, for
every function de�ned at the raw terms level, a quite complex adequacy proof must be given

2.1. NOMINAL SYNTAX 9

in order to extend the function to the type of α-equivalence classes, proving that the function
applied to α-convertible raw terms returns identical or α-convertible expressions.

Ford and Mason [21] in 2001 evaluated the PVS proof assistant proving the Church-Rooser the-
orem in a call by value λ-calculus formulation. Their substitution uses the renaming operation
on bound variables to prevent capture in the abstraction case, and as renaming preserves terms
size, this de�nition is easily shown to be well-founded. This work presents an interesting tech-
nique in the inductive de�nition of the α-conversion relation

α≡, which is usually called co�nite
quanti�cation in the literature. We show the abstraction case in �gure 2.1. The premise states
that there exists a �nite set of names T such that for all names x not belonging to this set or to
the free variables of the abstraction's bodies, it should hold that both bodies are α-convertible
after renaming their bound variables with the name x.

∃T ∈ Fin(V), ∀x /∈ T ∪ fv(e0) ∪ fv(e1), e0[x0 := x]
α≡ e0[x0 := x]

λx0.e0
α≡ λx1.e1

Figure 2.1: Ford and Mason's abstraction case of the α-conversion de�nition.

When proving an α-convertible property, they are able to conveniently select a �nite set of
variables T , and prove the premise for the abstraction bodies without considering those variables
in the proof context. So this allows them to reason in the same way as when using the BVC,
wisely selecting the name of the bound variables out of some �nite context. Furthermore, it
is frequently the case in proofs that one chooses some freshness context, and later on, in a
wider context, we have to review our choice to accommodate to �nitely many more freshness
constraints. Thus, it is convenient to introduce a notation that tells us we require some property
to hold over some in�nite range of variables, without mentioning it explicitly. However, proving
the simplest properties of this

α≡ relation is quite challenging in Ford and Mason's work, requiring
several mutual inductions over the length of the terms, because the substitution is de�ned as
presented by Curry and Feys in [16].

In chapter 4 we use a similar introduction rule for the abstraction case of the α-equivalence
relation. However, our de�nition is inspired on the one presented by Krivine in [32], but using
swapping insted of substitution. Krivine also de�nes a multiple substitution operation in his
work, similar to Stoughton's de�nition, but with no renaming clause as he works over the real
calculus.

In 2002 Pitts and Gabbay introduced the Nominal Logic [24], a �rst-order many-sorted logic with
equality, containing primitives for renaming via name-swapping, for freshness of names, and for
name-binding. The swapping operation has much nicer logical properties than the more general,
non-bijective forms of renaming. This operation provides a su�cient foundation for a theory
of structural induction/recursion for the syntax modulo α-equivalence classes for equivariant
assertions/functions. The equivariant property says that the truth/return value of an asser-
tion/function is invariant under name-swapping of the names. Since 2005, several works using
this technique in the Isabelle/HOL proof assistant have been developed by Urban et. al [65,66],
achieving a representation for α-equivalent lambda terms that is based on names, is inductive,
and comes with a structural induction principle on equivariant properties, where the inductive
lambda-case needs to be proved only for terms with fresh binders. In the next section we study
this formulation in deep, and in section 2.3 we survey mechanisations of Nominal Logic for the
λ-calculus using the Higher order abstract syntax (HOAS) technique.

10 CHAPTER 2. STATE OF THE ART

In 2003 Vestergaard and Brotherston [68] present a syntax with two related layers: the raw terms
and the equivalence classes of these terms under the α relation. Substitution, α-conversion and β-
reduction are de�ned at the raw level; their substitution does not prevent from variable capture,
so preconditions should hold to safely apply it. They present conditions under which results
about β con�uence at the quotient level can be derived from the same results at the raw level.
Then they present a con�uence proof conducted exclusively by the primitive proof principles
of the raw syntax, and the considered recursive relations, and it follows that this result can be
extended to the quotiented level. However, the last proof involves arbitrary inter-mixtures of α-
and β-reductions, bringing great complexity to the �nal proof of con�uence. We believe that the
main contributions of this work are:

• The study of the conditions under which con�uence at the raw and the real calculus are
equivalent.

• Although using a standard induction principle, the BVC takes a central role in the proof
of the diamond property of the β-reduction proof at the raw level. They use a variation of
the BVC, named the BCF, and its associated properties.

Nominal Techniques

Nominal logic provides a mathematical model for names in mathematics. It is based on Fraenkel
and Mostowski's set theory (FM) introduced in the �rst half of the 20th century. They intro-
duced atoms to model names, which have speci�c operations and properties that traverse all the
components of the theory. One of the basic operations is the permutation of atoms, that is, a
bijective mapping between atoms. Based on permutation, this theory re�ects the fact that atoms
have no internal structure, and that �one atom will do as well as any other atom�. Therefore,
every property should be preserved under a permutation of atoms, which is called equivariance
property in nominal literature.

Another key concept in this theory is the �nite support : Given a set X, a set S of atoms supports
an element x ∈ X, if x is invariant under every permutation of atoms which is the identity on S.
The �nite support axiom in the FM set theory claims that for any element in the theory there
exists a �nite set S supporting it. This de�nition aims to formalise that there exists a �nite set
of atoms S occurring in any element x, such any permutation that does not change these �nite
atoms, when applied to x will have no e�ect on it.

Gabbay and Pitts [23, 24] use this general theory to deal with bound names and α-equivalence
classes in any abstract syntax. They provide inductive types up to α-equivalence, in other
words, datatypes which admit structural induction and recursion principles while at the same
time constitute an α-equivalence quotient of the syntax. For this, they consider constructions
and properties that are invariant with respect to the permutation of names, that is, equivari-
ant constructions. They are thereby able to derive principles of recursion/induction over the
α-equivalence classes. This equivariance enables them to permute names, usually to avoid some
form of accidental name-capture, while preserving the inductive hypotheses. Indeed, name per-
mutation has much nicer logical properties than more general, non-bijective forms of renaming.
Even though name permutation is less general than renaming, it supports the construction of a
theory of names based upon it. The class of equivariant predicates has excellent logical proper-
ties, as it contains the equality, and is closed under negation, conjunction, disjunction, existential
and universal quanti�cations. The same is not true for renaming, for example the inequality is
not preserved by renaming.

2.2. NAMELESS SYNTAX 11

The swapping of the occurrences of an atom a with another b in an object x is usually denoted
as (a b)x. For example, in next �gure we show the abstraction introduction rule for the α-
equivalence relation based on the swapping operation:

(a b)x ∼α (a′ b)y
b 6= a and b does not occur in x, y

λa.x ∼α λa′.y

At the base of their theory Gabbay and Pitts adopt the notion of �nite supported mathematical
objects, which gives a well-behaved way, in terms of name-permutations, of expressing the fact
that atoms are fresh for mathematical objects if they do not belong to some �nite set supporting
them. This notion allows them to extend the concept of fresh names from �nite objects (as
abstract syntax trees) to in�nite ones (as in�nite sets and functions). In fact, they need that the
functions used in the instantiation of their iteration principle are �nitely supported.

In [60] an ML extension to declare and manipulate algebraic data types with variable binding
constructs is presented. These constructions with binders can be deconstructed in a safe way:
In the case of an abstraction inspection, a variable swapping with a freshly generated binder is
computed in the abstraction body, giving the user a fresh binder and the correspondly renamed
body of the opened abstraction. This mechanism grants that values with binders are opera-
tionally equivalent if and only if they represent α-equivalent objects. This result is proved giving
a denotational semantics into the universe of FM-sets, and then proving that this denotational
semantics matches the operational one. In this way they are able to prove that values of the
introduced data types with binders represent α-equivalence classes of object-level syntax.

In the next section we will discuss several mechanised works in the Isabelle/HOL proof assistant
based on these techniques, and consequently using a HOAS representation of the λ-terms abstract
syntax.

As previously mentioned, this theory allows for a nice formalisation of the main concepts con-
cerning bindings, such as α-equivalence and freshness, in terms of the swapping operation on
names. We further develop these ideas in chapters 4 and 5. However, our development diverges
from the nominal theory in the choice function χ : 2V → V, which selects a fresh variable not
belonging to some �nite set of variables. We represent variables by an in�nite enumeration, and
the returned fresh variable is determined by choosing the �rst variable in the enumeration not
in the given set. This choice function is not equivariant neither �nitely supported. However,
nominal techniques are compatible with the existence of non �nitely supported elements. Indeed,
we successfully apply some of these techniques to achieve induction/recursion principles over the
real calculus, and in chapter 6 we generalise the previous results to any abstract syntax with
binders. To implement this iterators over α-equivalence classes we apply a similar technique to
the one developed in [60], described above. Moreover, we are also able to prove that our itera-
tion principles are operationally equivalent for α-equivalent objects, what we will call the strong
α-compatibility property. As we embed proofs of properties within our iteration principle, our
framework enables the user not only to program α-compatible functions, but also gives facilities
to prove properties about these functions using α-induction principles, that is, at the quotient
level.

2.2 Nameless Syntax

This syntax was introduced by de Bruijn [17]. It introduces some overhead involving �shifted�
terms and contexts, which require extra statements in theorems, making it di�cult to keep track

12 CHAPTER 2. STATE OF THE ART

of the correspondence between informal and formal versions of the same result. Besides, the
object language medium-size terms of this representation are not human readable, so we believe
this approach fails in passing the transparency property. One advantage of this syntax is that the
overhead due to reasoning over α-equivalence classes is eliminated, since α-equivalent terms are
syntactically equal. It may be argued that the balance is positive, as many formalisations chose
this approach, but in some sense the overhead introduced is by the nature of the codi�cation,
and not by the problem itself. De Bruijn's representation is an encoding of the informal notion
of binding and does not address the relationship between free and bound variable names: a
free variable actually occurs, but its identity is lost when it becomes bound. We next introduce
interesting works that use this codi�cation, while being able to hide in great manner the previous
considerations.

In [27], Gordon uses the Cambridge HOL proof assistant to de�ne an induction principle equiv-
alent to the one developed in chapter 4, and shown �gure 2.2.

(∀a) P (a)
(∀M N) P (M) ∧ P (N)⇒ P (MN)
(∀M a) a 6∈ X ∧ P (M)⇒ P (λa.M)
(∀M) P (M)

Figure 2.2: α-induction principle

This principle, as the BVC, enables to choose the abstraction variable not in some given �nite set
of variables X, for the abstraction case of a proof by induction over terms. That is, we are able
to choose a fresh enough representative from an arbitrary α-equivalence class of terms. Gordon
uses the locally nameless variation of de Bruijn's syntax to represent λ-terms. This syntax was
already suggested by de Bruijn [17], in which �free variables have names but the bound variables
are nameless�. The main property of this syntax is that α-convertible terms are syntactically
equal. However, invalid terms appear in this representation, and a well-formedness predicate
is needed to exclude ill-formed terms from the formalisation. Because of this last issue, well-
formedness hypothesis should be added to the premises of all proofs. On the other hand, the main
advantage of this mixed strategy is that theorems can be expressed in the conventional form,
without the de Bruijn encoding, and in spite of this, the renaming of bound variables for fresh
ones is still supported in proofs, because syntactical equality is up to α-conversion. However,
when a renaming has to be done to pick another witness of an α-equivalence class, the classical
primitive inductive hypothesis does not have any information about the new renamed sub-term,
becoming necessary in general to perform an induction over the length of terms. In this way, they
are able to apply the inductive hypothesis to the renamed sub-term, because its length is strictly
decreasing. To overcame this overhead, Gordon introduces the previous induction principle for
decidable predicates, which, as expected, is proved by induction on the length of de Bruijn's
terms.

As an example of this methodology, some substitution lemmas from Hindley and Seldin's book [29]
are directly derived using this induction principle, without recourse to theorems about the un-
derlying locally nameless representation, neither exposing the internal renaming done to select
fresh variables. However, new operations and relations are not easily introduced, as they must
be de�ned at the locally nameless level, and also proved to be closed under a well-formedness
predicate. Besides, an axiomatisation of the behavior and properties of new operations must be
introduced at the raw level, to be able to use them without exposing any internal notation.

2.3. HIGHER ORDER ABSTRACT SYNTAX 13

2.3 Higher Order Abstract Syntax

Higher Order Abstract Syntax (HOAS) was introduced by Church [11], and mainly developed
by Martin-Löf [45], Miller [41] and P�enning [50, 58]. It uses the functions of the meta-logic
to encode bindings in an object language. In this way, the capture-free substitution operation
is handled at the meta-logic level, allowing its reuse in object languages. However, λ-terms
with free variables are more di�cult to represent. HOAS presents two variations for possible
implementations:

• HOAS: the abstract syntax abstractions are represented by meta-level functions with type
(λ-term → λ-term).

• weak HOAS: the abstractions are represented by meta-level functions with type (names →
λ-term).

In its �rst form, the HOAS binding model is quite di�erent form the informal one. However, it
introduces several simpli�cations: substitution is free and variable freshness is irrelevant. But
it also introduces several complications: because meta-level abstractions are a component of
the object language abstract syntax, structural induction is lost. Besides, as HOAS uses the
full meta-level function space, it causes the introduction of ill-formed terms in the model. While
some people �nd HOAS convenient, its signi�cant departure from standard mathematical practice
makes it quite di�cult to handle by readers not familiar with the HOAS technique.

On the other hand, in weak HOAS it is usually necessary to introduce an α-compatibility relation,
and it is not possible to re-use the meta-level substitution operation. However, this representation
has no exotic terms, and an induction principle can be automatically derived.

There exist several works, developed during approximately a decade, on the formalisation of
induction/recursion principles over α-equivalence classes of λ-terms, all of them developed in the
Isabelle/HOL proof assistant and the HOAS encoding. In the following paragraphs we present
some of these works.

Gordon and Melham [28], based on Gordon's work [27], present �ve axioms characterising λ-
terms in a nominal syntax, but syntactically identifying α-equivalent terms. They formalise this
work in the Cambridge HOL proof assistant. One of their axioms allows the introduction of new
functions over λ-terms at the conventional named syntax level, and without any overhead. They
do so by introducing an iteration principle over lambda terms. To de�ne a function from terms
to some type β using this principle, for the variable and application case, as usual, one must
provide functions of types vnames → β and β × β → β correspondingly. For the abstraction
case λa.M , a function f : (vnames → β) → β should be provided. By doing so, we can
obtain the recursive result (f b) for some renamed sub-term M [a:=b], for any variable b. So
this iteration principle does not return the recursive result for some arbitrary �xed abstraction
name, and thus it does not leak any information about the original binder a. By doing so,
it cannot distinguish between α-convertible terms. Hence, it can be proved that this iteration
principle de�nes α-compatible functions. This work begins to explore a HOAS approach, as they
introduce a constructor Abs : (vnames → terms) → terms, that is, any meta-level function
from variables to terms represents a lambda abstraction in the embedded language via the Abs
function. The crux of their development is the proof of the existence of a model for the Abs
function, which is based on an in�nitary intersection over the variable names space. So they
prove the existence of the model, but they do not give explicitly a computable one. We do not
know in deep the Isabelle/HOL proof assistant capabilities, and the paper does not give much

14 CHAPTER 2. STATE OF THE ART

more information about the encoding of the function Abs in their formalisation. Thus, is not
easy to evaluate nor to deduce how feasible is to transfer the Abs function to a Constructive
Type Theory setting. As a direct consequence, their iteration principle can be used to de�ne
functions at a logical level, and allows to prove properties about them, but it is not possible to
compute them. From the proposed iteration principle they derive an induction principle that,
taking β = Bool, in a similar way to the iteration one, gives the induction hypothesis for any
renaming of the bound variable in the abstraction case. Then, using this induction principle they
derive Gordons's induction principle for decidable predicates.

Continuing Gordon and Melham's work, Norrish [48] introduced a method to de�ne functions
in a much more familiar way, close to the classical principles of primitive recursion. For this, he
uses some ideas of Gabbay-Pitts nominal techniques approach, introducing the name swapping
operation as a basics for the abstract syntax with binders. He presents a set of increasingly
complex functions in order to measure the expressive power of his recursion principle. His
iteration principle passes the test, but has some side conditions to be proven about the functions
used to instantiate it. For instance, he must prove that each function used to de�ne the cases in
the iteration is �nited supported �that is, it does not create too many fresh variables�, and that
it behaves in a linear way through swapping �that is, it is equivariant.

Urban and Tasson [66] use Gabbay-Pitts' theory more deeply to construct an induction principle
similar to the introduced by Gordon, as shown in �gure 2.3. They use the concept of �nite support
of nominal sets, instead of the free-variables function over terms to state the freshness conditions.
They base this work on a weak HOAS [18] syntax, providing a nominal layer above it. They
prove the substitution composition lemma as an example of the use of their induction principle.
Our work in chapters 4 and 5 is in the line of this one, but we keep using a name-carrying syntax
and not a variation of a HOAS as they do.

Given some predicate P over λ-terms and a set A supporting the swapping operation, then:

(∀a) P (a,A)
(∀M,N) P (M,A) ∧ P (N,A)⇒ P (MN,A)
(∀a,M) a fresh in A ∧ P (M,A)⇒ P (λa.M,A)
(∀M) P (M,A)

Figure 2.3: α-induction principle

In [65], Urban and Norrish study under which conditions the BVC can be safely reproduced on
inductions over relations on λ-terms. For this, they introduce a variable convention compatibility
condition for each introduction rule in a relation de�nition, in order to support proofs using
the BVC: Firstly, all functions and side conditions should be equivariant. Secondly, the side
conditions should imply that all bound variables do not occur free in the conclusions. Finally,
all bound variables should be distinct. If the previous conditions hold, they are able to derive
a strengthened relation induction principle, where all binders can be chosen distinct from some
given context. They identify the lemma of substitution preserving parallel reduction and also the
weakening lemma for the simply typed λ-calculus as examples of problematic uses of the BVC.
For the typing relation they are able to derive the new induction principle. However, for the
parallel reduction relation they need to modify the classical de�nition in order to satisfy their
variable convention compatibility. In chapter 5 we also address these issues, and with suitable
α-induction principles on terms we do not need to derive ad-hoc induction principles for the
involved relations.

2.4. CONCLUSIONS 15

2.4 Conclusions

As seen before, the di�erent approaches to address abstract syntax issues can be mainly divided
into: �rst-order and higher-order. In the �rst-order approaches variables are encoded using
names or numbers, whereas higher-order approaches use the meta-level function space to encode
the bindings in the object language level. Indeed, the higher-order approach is appealing because
capture-avoidance and α-equivalence can be handled at the meta-level. However, we consider
that this is exactly the reason to avoid it in the present work, as we want to address these speci�c
issues in detail, and not to push them to other level.

If we do not consider de Brujin's nameless representation for binders, we can say that the �rst-
order approach is the most similar to standard informal presentations. We exclude de Brujin's
representation from our work because its statements require the introduction of operations that
are exotic to the addressed problem, and have to deal with encoding issues. In the next chapters
we will present our work based on two standard �rst-order approaches. First, in the more clas-
sical setting, we will work using Stoughton's multiple substitution operation, and as in classical
formalisations, all the meta-theory will be based on this substitution. Later, we will use nominal
techniques, where the name swapping operation takes a central role in the developed theory.

16 CHAPTER 2. STATE OF THE ART

CHAPTER 3

Stoughton's Multiple Substitution

This chapter consists in the article �Formal Metatheory of the Lambda Calculus Using Stoughton's
Substitution�, published in Theoretical Computer Science [14]. We present a formalisation of the
λ-calculus in Constructive Type Theory using a nominal approach with one sort of names for both
free and bound variables, and without identifying α-convertible terms. We use a multiple substi-
tution operation based on Stougthon's [61]. We prove that this substitution is α-compatible, the
Church-Rosser theorem, and the Subject Reduction theorem for the simply typed λ-calculus à
la Curry. The whole development has been formally checked using the Agda proof assistant [46].
The conception of this development was done in tight collaboration with the co-authors, and the
coding was completely developed by myself.

3.1 Introduction

The Lambda calculus was originally formulated with one sort of names to serve both as real
(free) and apparent (bound) variables [10]. Such design brought about two di�erent issues:

• On the one hand side, because of the existence of bound names, there is what we shall call
the α-conversion issue, i.e. that terms di�ering only in the choice of their bound names
should be functionally indistinguishable.

• And, on the other, because bound names in one term may coincide with free names in
another, we have what we shall call the substitution issue, i.e. that substitution of terms
for real variables has to be performed in some sophisticated way so as to avoid capture of
names by binders.

Historically too, substitution was granted the more fundamental place within the couple above,
since it was used in the de�nition of α-conversion. Substitution itself was just left unde�ned by
Church [10] in the original formulation of the calculus but later its complexity became a prime
motivation for Curry and Feys [16], which provided the �rst de�nition, somewhat as follows:

17

18 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

x[y := P] =

{
P if x = y
x if x 6= y

(MN)[y := P] = M [y := P] N [y := P]

(λx.M)[y := P] =


λx.M if y not free in λx.M
λx.M [y := P] if y free in λx.Mand x not free in P
λz.(M [x := z])[y := P] if y free in λx.M and x free in P,

where z is the �rst variable not free in M,P.

The complexity lies in the last case, i.e. the one requiring to rename the bound variable of the
abstraction wherein the substitution is performed. The recursion proceeds, evidently, on the size
of the term; but, to ascertain that M [x := z] is of a size smaller than that of λx.M , a proof has
to be given and, since the renaming is e�ected by the very same operation of substitution that is
being de�ned, such a proof must be simultaneous to the justi�cation of the well-foundedness of
the whole de�nition. The procedure is indeed intricate and, incidentally, hardly ever mentioned
as such in the several texts introducing the Lambda calculus along this line.

Also as a consequence of the de�nition above, there is the inconvenience that proofs of properties
of the substitution operation have often to be conducted on the size of terms and have generally
three subcases corresponding to abstractions, with possibly two invocations to the induction
hypothesis in the subcase considered above. For instance consider the following proposition,
which can be taken as stating that substitution is free from name capture:

x ∈ FV(M)⇒ FV(M [x := P]) = (FV(M) \ {x}) ∪ FV(P),

where FV(M) stands for the set of free variables of M . In the case of abstractions we have to
consider FV((λx.M)[y := P]) which in the complex subcase becomes FV(λz.M [x := z][y := P]).
In order to compute FV(M [x := z][y := P]) from the outside we need �rst a (size) induction
hypothesis on M [x := z], and then, in a second step, the induction hypothesis has to be applied
further to M .

Since the fundamental relations of α-conversion and β-computation and conversion are de�ned in
terms of substitution, reasoning with this operation becomes ubiquitous in the metatheory of the
Lambda calculus. Within the present approach, it also happens that all too often a mismatch
arises between natural inductive de�nitions of those fundamental relations and the inductive
structure of the substitution operation, which forces to employ induction on terms instead of
induction on the relations in question �with the inconveniences just pointed out. For instance,
we naturally have a rule

M→→N
λx.M→→λx.N

as part of the de�nition of β-computation. But, in proving for instance that this relation is
compatible with substitution, i.e. that

M→→N ⇒M [y := P]→→N [y := P]

the induction hypothesis on M and N cannot be used in the complicated case of abstraction in
which the thesis is

λz.(M [x := z])[y := P]→→λz′.(N [x := z′])[y := P]

3.1. INTRODUCTION 19

Some alternative approach to treating substitution is therefore necessary, especially if one is, like
we are, interested in actually carrying out the completely formal metatheory to a substantial
extent, e.g. by employing some of the several proof assistants available.

A whole family of alternatives is associated to the idea that, contrary to the historical standpoint,
the issue of α-conversion is actually more fundamental than that of the de�nition of non-capturing
substitution. Or, more concretely, that the issue of how to reason and compute modulo α-
conversion should be solved �rst so as to yield, among other things, a su�ciently abstract
de�nition of substitution.

One alternative along this view is to apply the principles of what has become known as nominal
abstract syntax [23, 24, 52�54]: α-conversion is de�ned in terms of a basic operation of name
permutation which acts uniformly on free and bound names. Then principles of induction and
recursion are formulated that allow, under natural conditions, to work on abstract α-classes of
terms, thus formalising informal practice as carried out in most textbooks. With this method it
is possible, for instance, to formally de�ne substitution in the simple way given place to by the
application of the so-called Barendregt variable convention. The approach has been implemented
on machine in [1, 13,65,66].

The former is nominal syntax as opposed to the �nameless� terms of de Bruijn [17] or its more
up-to-date version, locally nameless syntax [2, 7]. These works take the radical approach to
eliminate bound names and therefore α-conversion altogether. The result is a more machine-
like presentation of the calculus for which a certain overhead necessary to ensure soundness
(particularly in handling substitution) cannot be entirely avoided.

Finally, probably the �rst proposal of formalisation of reasoning modulo α-conversion is [28]. This
work gives an axiomatisation of the syntax of the Lambda calculus in which equality embodies
α-conversion and for whose resulting (abstract) terms a method of de�nition by recursion is
provided. It ultimately rests upon the use of higher-order abstract syntax within the system
HOL.

In this paper we are, however, interested in further pursuing the historical approach. This means,
to begin with, to agree to the priority of substitution over α-conversion and to search for tractable
de�nitions thereof.

A �rst way out within this perspective consists in employing for the local or bound names a type
of symbol di�erent from the one of the real variables: that was, to begin with, Frege's choice in
the �rst fully �edged formal language [22], which featured universal quanti�cation as a binder,
and was later made again by at least Gentzen [25], Prawitz [56] and Coquand [15]. Within the
�eld of machine-checked meta-theory, McKinna and Pollack [40] used the approach to develop
substantial work in the proof assistant Lego, concerning both the pure Lambda calculus and Pure
Type Systems. Now, the method is not without some overhead: there must be one substitution
operation for each kind of name and a well-formedness predicate to ensure that bound names do
not occur unbound �so that induction on terms becomes in fact induction on this predicate.

If, still, one persists in sticking to the original syntax, there �rst appears the idea, employed
in [57], of introducing an operation of renaming consisting in the replacement of a bound name
by another. Renaming is simpler than substitution, as it proceeds just naïvely, and can be used
to implement α-conversion provided the new name is chosen so that it does not at all occur in
the term in question. It is also su�cient, under the same proviso, to implement the complex
case of substitution. This latter use of renaming provides a way out of the complexity of the
justi�cation of the de�nition of substitution as exposed above. But, on the other hand, it cannot

20 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

avoid the need of induction on the size of terms, both for justifying the recursion employed in
substitution and in the subsequent proofs involving this operation.

We maintain that the genuinely historical approach to the metatheory of the lambda calculus is
the one initiated by Curry and Feys [16] and later pursued at least partly in [29]. And that, when
trying to fully formalize this theory and give it an implementation on machine, there appears
a thesis worth testing, namely that it was Stoughton [61] who provided the right formulation
of substitution. The prime insight is simple: In the di�cult case where renaming of a bound
variable is necessary, structural recursion is recovered if one lets substitutions become multiple
(simultaneous) instead of keeping them just unary. Moreover, further simpli�cation is achieved
if one does not bother in distinguishing so many cases when considering the substitution in an
abstraction and just performs uniformly the renaming of the bound variable: indeed, given that
equivalence under renaming of bound variables is natural and necessary, it makes no point to try
to preserve as much as possible the identity of the concrete terms, as in the Curry-Feys de�nition.
As pointed out by Stoughton, the idea of using multiple substitution comes from [20], whereas
the one of uniform renaming is originally presented in [57].

In this paper we present proofs of fundamental results of the metatheory of the Lambda calculus
employing Stoughton's de�nition of substitution. Speci�cally, concerning β-reduction we prove
the Church-Rosser theorem and the Subject Reduction theorem for the system of assignment
of simple types. The de�nitions and proofs have been fully formalised in Constructive Type
Theory [37] and machine-checked employing the system Agda [46]. The corresponding code is
available at https://github.com/ernius/formalmetatheory-stoughton. In the subsequent
text we give the proofs in English with a considerable level of detail so that they serve for
clarifying their formalisation. We hope thereby to show that what we have called the historical
approach to the metatheory of the calculus is indeed formally and machine-tractable, thanks to
the adequate reformulation of the substitution operation. Indeed, the proofs of both principal
theorems follow standard strategies, and are formalised in a gentle manner.

The structure of the paper is as follows: in section 2 we begin by introducing the syntax of the
Lambda calculus and the de�nition of substitution, together with some basic propositions. We
also present a little theory concerning the composition of substitutions which is not indispensable
for establishing our main results but allows for a more elegant presentation thereof and bears
some interest in itself. Section 3 is about α-conversion, which is given an inductive de�nition
directed by the structure of terms. We then establish two results, namely that the so de�ned α-
conversion is a congruence and that it is compatible with substitution (the substitution lemma).
Thereby the two �rst sections constitute themselves into a reformulation of Stoughton's original
paper [61] in which we give alternative de�nitions and proofs obtaining what we believe is a
simpler structure of the whole. Section 4 introduces the notion of β-reduction and proves the
Church-Rosser theorem by using the standard method due to Tait and Martin-Löf which involves
the formulation and study of the parallel β-reduction. In section 5 we formulate the system of
assignment of simple types to terms, and then also prove that it is compatible with substitution.
From this result, the closure of typing under α-conversion and the subject reduction property of
β-reduction are also proven. The overall conclusions are exposed in section 6.

This paper is an extended and revised version of [64], which only included the treatment of α-
conversion up to the Substitution Lemma. Additional material includes Section 4 on β-reduction
and the Church-Rosser theorem, Section 5 on the simple typed system and the Subject Reduction
theorem, and the part of Section 2 on composition of substitutions. Also, as already mentioned,
we use natural mathematical syntax instead of Agda's in order to improve readability.

3.2. SUBSTITUTION 21

3.2 Substitution

Syntax We start with a denumerable type V of names, also to be called variables � i.e. for
concreteness we can put V =def N or V =def String. Letters x, y, z with primes or subindices
shall stand for variables. The type Λ of terms is de�ned inductively as usual �here below we
show it as a grammar for abstract syntax:

M,N ::= x |MN | λx.M .

In concrete syntax we assume the usual convention according to which application binds tighter
than abstraction.

Freedom and freshness We now de�ne inductively what it is for a variable x to occur free
in a term M , which we write x ∗M :

x ∗ x x ∗M
x ∗MN

x ∗N
x ∗MN

x ∗M x 6= y
x ∗ λy.M

The negation of this relation is also given an inductive de�nition: we write it x #M and read it
x fresh in M , borrowing notation and terminology from the theory of nominal abstract syntax:

x 6= y
x # y

x #M x #N

x #MN x #λx.M
x #M

x #λy.M

An important relation between terms is that of sameness of free variables:

M ∼∗ N =def (∀x∈V) (x ∗M ⇔ x ∗N).

Substitutions We shall work with multiple (simultaneous) substitutions associating terms to
variables. Therefore a type Σ of substitutions is very naturally introduced as:

Σ =def V→ Λ.

Now this de�nition could be deemed much too wide, because the only substitutions arising in
computing or comparing terms are identity almost everywhere and, for instance, the latter admit
a decidable extensional equality whereas our general functions do not. The point is, however,
sorted out by the following observations.

Let us �rst use ι for the identity substitution, i.e. the function mapping each variable to itself
as term, and introduce the following operation of update. If σ is a substitution, x a variable and
M a term, then σ, x:=M is another substitution, de�ned by:

(σ, x:=M)x =def M

(σ, x:=M) y =def σ y if x 6= y.

Then, starting up from ι, the operation of update generates every concrete substitution to be
ever encountered. We could have axiomatised a type of (�nite) tables for the substitutions, but
actually at no point at which we reason generally over substitutions do we need to constrain
them into those generated by the operations above. Instead it turns out that our main results
concern the operation of substitutions on the free variables of given terms, i.e. their restrictions
to such variables. Therefore it is convenient to introduce a type of restrictions:

22 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

P =def Σ× Λ.

The restriction of substitution σ to term M is to be written σ �M . Now several useful relations
are de�ned on restrictions. The �rst one is extensional equality :

σ �M ∼= σ′ �M ′ =def M ∼∗ M ′ ∧ (x ∗M ⇒ σ x = σ′ x).

A noticeable particular case of this is when M and M ′ are one and the same term. In that case
we write σ ∼= σ′ � M and get the following characterisation directed by the structure of M . We
use all variables universally quanti�ed, unless otherwise stated.

Proposition 1.

1. σ ∼= σ′ � x ⇔ σ x = σ′ x.

2. σ ∼= σ′ �MN ⇔ σ ∼= σ′ �M ∧ σ ∼= σ′ � N.

3. σ ∼= σ′ � λx.M ⇔ (σ, x:=N) ∼= (σ′, x:=N) �M , for some N .

The proof can be carried out by straightforward logical calculations, using that y ∗MN ⇔ y ∗M
∨ y ∗N as well as y ∗ λx.M ⇔ y ∗M ∧ y 6= x. These, in turn, are immediate from the inductive
de�nition of _ ∗_. �

We next extend freedom and freshness of variables to restrictions:

x ∗ (σ �M) =def (∃y ∗M) x ∗ σ y.

x # (σ �M) =def (∀y ∗M) x #σ y.

We can also characterise these relations following the structure of the term:

Proposition 2.

1. y ∗ (σ � x) ⇔ y ∗ σ x.

2. y ∗ (σ �MN) ⇔ y ∗ (σ �M) ∨ y ∗ (σ � N).

3. y ∗ (σ � λx.M) ⇔ y ∗ (σ, x:=z �M) with z 6= y.

4. y # (σ � x) ⇔ y #σ x.

5. y # (σ �MN) ⇔ y # (σ �M) ∧ y # (σ � N).

6. y # (σ � λx.M) ⇔ y # (σ, x:=z �M) with z 6= y.

The proof is similar to the one of preceding proposition. �

We likewise extend sameness of free variables to restrictions:

(σ �M) ∼∗ (σ′ �M ′) =def x ∗ (σ �M)⇔ x ∗ (σ′ �M ′).

And then the following is proven by simple calculation from the de�nitions:

Proposition 3. σ �M ∼= σ′ �M ′ ⇒ (σ �M) ∼∗ (σ′ �M ′). �

We shall also use the abbreviated notation σ ∼∗ σ′ �M for (σ �M) ∼∗ (σ′ �M).

3.2. SUBSTITUTION 23

Action of substitutions on terms The e�ect of multiple substitutions on terms can be
de�ned by simple structural recursion on the latter. The crucial insight in this respect is the
observation that if one lets substitutions become multiple (i.e. simultaneous) then the renamings
of bound variables that will eventually be necessary can be recorded together with the originally
acting substitution so that the resulting (enlarged) substitution just passes on to act on the (un-
modi�ed) body of the abstraction. Indeed, no collision can arise, since the original substitution is
destined for the free variables of the term, and therefore not for the bound name to be modi�ed.

A complementary insight is that when a binder is crossed the collection of free variables to be
a�ected is increased by one, and therefore the originally acting substitution should be appro-
priately instructed on what to do with that name. It is just pointless to enter a distinction of
cases destined to avoid the modi�cation of this name whenever possible, as in the Curry-Feys
de�nition. The reason is that renaming should be non-harmful: terms di�ering only in the choice
of bound names should have identical behavior and we are forced to take care of this principle
as soon as some renaming is ever allowed. This observation leads to treating substitutions on
abstractions uniformly: we search for an appropriate name to replace the bound variable, record
the renaming into the current substitution and go ahead into the body. The new name should
not capture any of the names introduced into its scope by e�ect of the substitution. It therefore
su�ces that it be fresh in the restriction of the original substitution to the abstraction on which
it is acting. Also, the action of the substitution on the term must be a function of these two,
and therefore the choice of the new name should be determined by the restriction in question.
We thus arrive at the de�nition below. The action of substitution σ on term M is written Mσ.
In concrete syntax it will bind tighter than application:

xσ =def σx
(MN)σ =def Mσ Nσ
(λx.M)σ =def λy.M(σ, x:=y) where y = χ (σ � λx.M).

The function χ acts on restrictions and performs the choice of the new bound name as explained
above. Its result should actually depend only on the collection of free names in the restriction
in question, so we can specify it by the following requirements, to be called the choice axioms:

1. χρ # ρ.

2. ρ ∼∗ ρ′ ⇒ χρ = χρ′.

A choice function can be readily implemented by just returning e.g. the �rst variable not free in
the given restriction �thus resembling the Curry-Feys de�nition. Our Agda code for the present
development provides such implementation together with its correctness proof. Here we omit
further details.

Now there are two �rst basic results concerning the action of substitutions on terms. We begin by
showing that extensional equality of restrictions to a term is equivalent to yielding equal results
when acting on that term:

Lemma 1. σ ∼= σ′ �M ⇔ Mσ = Mσ′.

The proof is by structural induction on M . We spell it in detail.

For the case of a variable x, we have:

σ ∼= σ′ � x
⇔ (Proposition 1)

24 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

σ x = σ′ x
⇔ (Action of substitutions)

xσ = xσ′.

For applications MN we observe:

σ ∼= σ′ �MN
⇔ (Proposition 1)

σ ∼= σ′ �M ∧ σ ∼= σ′ � N
⇔ (Induction)

Mσ = Mσ′ ∧Nσ = Nσ′

⇔ (Application formation)

Mσ Nσ = Mσ′ Nσ′

⇔ (Action of substitutions)

(MN)σ = (MN)σ′.

Finally for abstractions λx.M we �rst observe χ (σ � λx.M) = χ (σ′ � λx.M), in the following
way:

σ ∼= σ′ � λx.M
⇒ (Proposition 3)

σ ∼∗ σ′ � λx.M
⇒ (Choice axiom 2)

χ (σ � λx.M) = χ (σ′ � λx.M).

Let now y = χ (σ � λx.M) = χ (σ′ � λx.M). We then have:

σ ∼= σ′ � λx.M
⇔ (Proposition 1)

(σ, x:=y) ∼= (σ′, x:=y) �M
⇔ (Induction)

M(σ, x:=y) = M(σ′, x:=y)
⇔ (Abstraction formation)

λy.M(σ, x:=y) = λy.M(σ′, x:=y)
⇔ (Action of substitutions)

(λx.M)σ = (λx.M)σ′.

�

Secondly, we prove the following lemma establishing that no capture of free names occurs by
e�ect of the substitution as de�ned:

Lemma 2 (No Capture). y ∗Mσ ⇔ y ∗ (σ �M).

The proof is by structural induction on M . The cases of a variable and of applications are
straightforward using Proposition 2. We show the case of abstractions:

3.2. SUBSTITUTION 25

y ∗ (λx.M)σ
⇔ (Action of substitutions)

y ∗ λz.M(σ, x:=z)
⇔ (De�nition of ∗)

y ∗M(σ, x:=z) ∧ z 6= y
⇔ (Induction)

y ∗ (σ, x:=z �M) ∧ z 6= y
⇔ (Proposition 2)

y ∗ (σ � λx.M). �

The conciseness of both statement and proof of each of these two preceding lemmas is quite
remarkable, especially in comparison with the corresponding versions using unary substitution.

On the composition of substitutions We now proceed to considering a little theory con-
cerning the sequential composition of substitutions. The theory consists of a series of de�nitions
and results given all along the original article by Stoughton which we here factor out expecting
to clarify how they too can be formalised. Some of the ultimate results are helpful in the rest of
the development.

The composition of substitutions is of course conceivable because the action on terms as de�ned
above extends each substitution to a function from terms to terms. It is then natural to de�ne
σ′ ◦ σ as the substitution satisfying

(σ′ ◦ σ)x =def (σ x)σ′.

The �rst important result turns now out to be that the action of this composite substitution is
equivalent to the sequence of the actions of the composed ones. Before getting to that it is useful
to state:

Proposition 4. x #M ⇒ σ, x:=N ∼= σ �M .

The proof is immediate from the de�nition of the conclusion. �

Proposition 5. (σ′ ◦ σ) �M ∼∗ σ′ � (Mσ).

The proof is by some calculation from the de�nitions. �

Further, in the present context it is convenient to speak of the extensional equality of substi-
tutions. This can be de�ned in terms of the corresponding equality of restrictions introduced
above, in the following way:

σ ∼= σ′ =def (∀x : V)σ ∼= σ′ � x.

It then follows easily from the de�nition of extensional equality of restrictions that:

Proposition 6. σ ∼= σ′ ⇔ σ ∼= σ′ �M . �

Now we can prove the following, by simple calculation from the de�nitions:

Proposition 7 (Distributivity of composition over update). σ′ ◦ (σ, x:=M) ∼= (σ′ ◦ σ), x:=Mσ′.
�

26 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

And now the main result alluded to above is the following:

Proposition 8. M(σ′ ◦ σ) = (Mσ)σ′.

The proof is by structural induction on M . We detail the case of abstractions: First we observe
that, by Proposition 5, (σ′ ◦ σ) � λx.M ∼∗ σ′ � (λx.M)σ. Hence we can put y = χ ((σ′ ◦ σ) �
λx.M) = χ (σ′ � (λx.M)σ) by axiom 2 of the choice function. Now,

(λx.M)(σ′ ◦ σ)
= (Action of substitutions)

λy.M((σ′ ◦ σ), x:=y),

and, on the other hand,

((λx.M)σ)σ′

= (Action of substitutions, with x′ #σ � λx.M)

λy.(M(σ, x:=x′))(σ′, x′:=y)
= (Induction)

λy.M(σ′, x′:=y ◦ σ, x:=x′)
= (Propositions 7 and 6 and Lemma 1)

λy.M((σ′, x′:=y ◦ σ), x:=y).

It is therefore su�cient to show (σ′ ◦ σ), x:=y ∼= (σ′, x′:=y ◦ σ), x:=y � M . Let then z ∗M . If
z = x then the two substitutions in question coincide at z (yielding the term y). If otherwise
z 6= x, we observe �rst that it follows z ∗ λx.M and therefore x′ #σ z. Let us now calculate the
right hand side substitution on z:

((σ′, x′:=y ◦ σ), x:=y) z
= (z 6= x)

(σ′, x′:=y ◦ σ) z
= (Composition of substitutions)

(σ z)(σ′, x′:=y)
= (Proposition 4, using x′ #σ z)

(σ z)σ′

= (Composition of substitutions)

(σ′ ◦ σ) z
= (z 6= x)

((σ′ ◦ σ), x:=y) z.

�

The following is obtained by direct calculation:

Proposition 9.

1. (σ1 ◦ σ2) ◦ σ3 ∼= σ1 ◦ (σ2 ◦ σ3).

2. σ ◦ ι ∼= σ. �

3.3. ALPHA-CONVERSION 27

However, we do not have ι as left identity to composition. Due to the uniform renaming of the
bound variables performed in the action of substitution we get the result only up to α-conversion,
which we shall de�ne in the next section. We end up with a result that will be useful below:

Proposition 10. z #λx.M ⇒ σ, x:=y ∼= (σ, z:=y) ◦ (ι, x:=z) �M.

The proof involves simple calculations and distinction of cases �

3.3 Alpha-conversion

Alpha-conversion is now de�ned inductively and in a syntax directed manner as follows:

x ∼α x
M ∼α M ′ N ∼α N ′

MN ∼α M ′N ′

M(ι, x:=z) ∼α M ′(ι, x′:=z)
z #λx.M, λx′.M ′

λx.M ∼α λx′.M ′

This de�nition is inspired in one given in [53] and it is also similar to the one in [55]. The
symmetry of the abstraction rule favours certain proofs as we shall comment shortly. It is not
present in Stoughton's de�nition, which renames the bound variable of one of the abstractions
into the one of the other under appropriate circumstances. Stoughton's de�nition includes rules
for re�exivity, symmetry and transitivity of the relation right from the beginning and then one
of the �nal results of the work is an almost syntax directed characterisation �namely with two
di�erent rules for abstractions. We instead shall show that the present syntax-directed de�nition
gives an equivalence relation, which is the �rst important result to be reached below. The
other one is that α-conversion is compatible with substitution. As we comment in detail in the
�nal section, our development is considerably simpler, although at the price of employing size
induction at one point, which we shall indicate. Stoughton's development, meanwhile, is entirely
free from size induction.

Our �rst result is:

Lemma 3. M ∼α M ′ ⇒ M ∼∗ M ′.

The proof is by induction on ∼α, with some calculation needed in the abstraction case. �

The next result is that α-equivalent terms submitted to one and the same substitution get equal-
ized. This is due to the uniform renaming of abstractions and the fact that the new name chosen
is determined by the restriction of the substitution to the free variables of the abstraction. Since
α-equivalent terms (in particular, abstractions) have the same free variables, then the name
chosen when e�ecting a substitution on any two α-equivalent abstractions will be the same. For-
mally, we need:

Proposition 11. M ∼∗ M ′ ⇒ σ �M ∼∗ σ �M ′,

which follows by just logical calculations. �

We then have:

28 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

Lemma 4. M ∼α M ′ ⇒ Mσ = M ′σ.

The proof is by induction on ∼α. In the case of abstractions λx.M and λx′.M ′ we �rst notice
as above that we can put y = χ (σ � λx.M) = χ (σ � λx′.M ′). Then,

(λx.M)σ
= (Action of substitutions)

λy.M(σ, x:=y),

and

(λx′.M ′)σ
= (Action of substitutions)

λy.M ′(σ, x′:=y).

Now consider z #λx.M, λx′.M ′ as in the premise of the abstraction rule of ∼α. Then we can
show the bodies of the two abstractions equal, as follows:

M(σ, x:=y)
= (Proposition 10, using z #λx.M)

M((σ, z:=y) ◦ (ι, x:=z))
= (Action of the composition of substitutions)

(M(ι, x:=z))(σ, z:=y)
= (Induction)

(M ′(ι, x′:=z))(σ, z:=y)
= (Action of the composition of substitutions)

M ′((σ, z:=y) ◦ (ι, x′:=z))
= (Proposition 10, using z #λx′.M ′)

M ′(σ, x′:=y).
�

We can now get to the following important result:

Lemma 5. Mι = M ′ι ⇒ M ∼α M ′.

The proof is by complete induction on the size of M with a subordinated induction of the same
kind on M ′. Let us look at the case in which both are abstractions. We have, just by de�ni-
tion of the action of substitutions, that (λx.M)ι = λy.M(ι, x:=y) and, similarly, (λx′.M ′)ι =
λy′.M ′(ι, x′:=y′). But then by hypothesis these two are equal and therefore y′ = y andM(ι, x:=y) =
M ′(ι, x′:=y). Moreover, y #λx.M , which is the same as y # ι � λx.M , and similarly for λx′.M ′.
Now we reason as follows:

M(ι, x:=y) = M ′(ι, x′:=y)
⇒ (Congruence of substitution action)

(M(ι, x:=y))ι = (M ′(ι, x′:=y))ι
⇒ (Induction)

M(ι, x:=y) ∼α M ′(ι, x′:=y)
⇒ (∼α, using y #λx.M, λx′.M ′)

3.3. ALPHA-CONVERSION 29

λx.M ∼α λx′.M ′.

�

We are certainly leaving implicit the calculations of sizes involved in the articulation of this
induction. In the completely formal version in Agda we use a standard library Induction.Nat
which provides a well founded recursion operator. The proof is 30 lines long and uses mainly
lemmas about the order relation on natural numbers. We could alternatively have used Agda's
sized types.
The following is now immediate:

Corollary 1. M ∼α M ′ ⇔ Mι = M ′ι. �

Notice that the corollary provides a method of normalisation with respect to ∼α. Actually, after
Lemma 5 the following could also be said immediate:

Lemma 6. ∼α is an equivalence relation.

We illustrate the proof with just the case of re�exivity: evidently Mι = Mι, hence M ∼α M . In
the same way, symmetry and transitivity of equality are transferred to ∼α. �

We hereby achieve a syntax directed characterisation of ∼α, plus the result that it is a congruence,
in a much more direct way than the one in Stoughton's paper or its formalisation in [33]. The
conciseness achieved justi�es, to our mind, the use we have made of size induction; we do,
however, remark that this is not essential, in the sense that we could have formalised the whole
development as originally by Stouhgton in [61], only that in a much lengthier way.

We now arrive to the so-called Substitution Lemma for ∼α, which establishes that this relation is
compatible with substitutions. To begin with, the α-equivalence of substitutions is also properly
de�ned on restrictions:

(σ �M) ∼α (σ′ �M ′) =def M ∼∗ M ′ ∧ (x ∗M ⇒ σ x ∼α σ′ x).

As in other cases, we write σ ∼α σ′ � M when M and M ′ above coincide. We now �rst have a
straightforward generalisation of the Corollary 1:

Corollary 2. σ ∼α σ′ �M ⇔ ι ◦ σ ∼= ι ◦ σ′ �M . �

Now we state:

Lemma 7. σ ∼α σ′ �M ⇒ Mσ ∼α Mσ′.

The proof is the following calculation showing (Mσ)ι = (Mσ′)ι, whence the thesis:

(Mσ)ι
= (Action of composition of substitutions)

M(ι ◦ σ)
= (Since σ ∼α σ′ �M , using Corollary 2 and Lemma 1)

M(ι ◦ σ′)
= (Action of composition of substitutions)

(Mσ′)ι. �

30 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

This lemma also admits a proof by structural induction onM . The induction-free proof is a con-
sequence of the normalisation procedure embodied in the corollaries 1 and 2. We �nally arrive at:

Lemma 8 (Substitution Lemma for ∼α). M ∼α M ′ and σ ∼α σ′ �M ⇒Mσ ∼α M ′σ′.

The proof is now a very short calculation:

Mσ
∼α (Lemma 7)

Mσ′

∼α (Lemma 4 and re�exivity of ∼α)

M ′σ′. �

Also simple calculations from Lemma 5 conduct to the two rules for abstractions in Stoughton�s
de�nition of ∼α:

Corollary 3.

1. y #M ⇒ λx.M ∼α λy.M(ι, x:=y).

2. M ∼α M ′ ⇒ λx.M ∼α λx.M ′. �

The following are also immediate from Lemma 5, concerning the e�ect of the identity substitution.

Corollary 4.

1. Mι ∼α M .

2. (ι ◦ σ) ∼α σ. �

As with equality before, the second line above could as well be just (ι ◦ σ) ∼α σ � x.

Finally, we give three results to be employed in the next section:

Corollary 5.

1. y #σ � λx.M ⇒ (M(σ, x:=y))(ι, y:=N) ∼α M(σ, x:=N).

2. y #σ � λx.M ⇒ (λx.M)σ ∼α λy.M(σ, x:=y).

3. λxM ∼α λyN ⇒ M ∼α N(ι, y:=x). �

3.4 Beta-Reduction and the Church-Rosser Theorem

Beta-contraction is the simple relation given as (λx.M)N . M(ι, x:=N). We obtain beta-
reduction by considering the re�exive, transitive, and compatible with the syntactic constructors,
closure of the former, augmented with ∼α. Beta-reduction is con�uent, which has a classical proof
by Tait and Martin-Löf, whose formalisation in Type Theory we depict presently.

The proof rests upon the property of con�uence of the so-called parallel reduction, which we
present here below as an inductive de�nition. The rules are essentially the same as in [4] or [62]
but we have to add a rule allowing explicit α-conversion, since we are working with concrete

3.4. BETA-REDUCTION AND THE CHURCH-ROSSER THEOREM 31

terms, i.e. not identi�ed under such relation. The de�nition below can also be regarded as an
inductive formalisation of the version in [29]:

x⇒ x
M ⇒M ′ N ⇒ N ′

MN ⇒M ′N ′
M ⇒M ′

λx.M ⇒ λx.M ′

M ⇒M ′ N ⇒ N ′

(λx.M)N ⇒M ′(ι, x:=N ′)

M ⇒M ′ M ′ ∼α M ′′

M ⇒M ′′

It will show convenient to make use of the relation ⇒0 that obtains by omitting the last rule
above, i.e. by not performing steps of ∼α conversion. Parallel reduction can be extended to
(restrictions of) substitutions in a direct way, i.e.

σ ⇒ σ′ �M =def x ∗M ⇒ σ x⇒ σ′ x.

We have, to begin with, the following:

Lemma 9.

1. M ⇒M ′ ⇒ x ∗M ′ ⇒ x ∗M.

2. M ⇒M ′ ⇒ x #M ⇒ x #M ′.

The proofs are simple inductions on ⇒. �

It easily follows that

Corollary 6. M ⇒M ′ and σ ⇒ σ′ �M ⇒ y #σ �M ⇒ y #σ′ �M ′. �

Now we prove that parallel reduction is compatible with substitution:

Lemma 10 (Substitution lemma for parallel reduction).
M ⇒M ′ andσ ⇒ σ′ �M ⇒ Mσ ⇒M ′σ′.

The proof is by induction on ⇒. We spell it in full.

For a variable x, we have:

xσ
= (Action of substitutions)

σ x
⇒ (σ ⇒ σ′ � x)

σ′ x
= (Action of substitutions)

xσ′.

For application MN ⇒M ′N ′:

(MN)σ
= (Action of substitutions)

Mσ Nσ
⇒ (Induction and ⇒ of applications)

32 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

M ′σ N ′σ
= (Action of substitutions)

(M ′N ′)σ.

For abstraction λx.M ⇒ λx.M ′:

(λx.M)σ
= (Action of substitutions, with y #σ � λx.M)

λy.M(σ, x:=y)
⇒ (Induction, with σ, x:=y ⇒ σ′, x:=y �M , and ⇒ of abstractions)

λy.M ′(σ′, x:=y)
∼α (Corollary 5.2, using y #σ′ � λx.M ′ which follows from y #σ � λx.M by Corollary 6)

(λx.M ′)σ′.

Notice that the two last steps above amount to one application of the rule of ⇒ involving
α-conversion (i.e. the last rule of the de�nition of ⇒) and therefore yield the result required.

For the case of a β-parallel reduction, i.e. (λx.M)N ⇒M ′(ι, x:=N ′):

((λx.M)N)σ
= (Action of substitutions, with y #σ � λx.M)

(λy.M(σ, x:=y))Nσ
⇒ (Induction, with σ, x:=y ⇒ σ′, x:=y �M , and outermost application of the β-rule of ⇒)

(M ′(σ′, x:=y))(ι, y:=N ′σ′)
∼α (Corollary 5.1, using y #σ′ � λx.M ′ which follows from y #σ � λx.M by Corollary 6)

M ′(σ′, x:=N ′σ′)
= (Composition of substitutions and distributivity over update)

(M ′(ι, x:=N ′))σ′.

Finally, for the last case, where M ⇒M ′ and M ′ ∼α M ′′:

Mσ
⇒ (Induction)

M ′σ′

= (Lemma 4)

M ′′σ′.

�

Notice that this rather straightforward induction on ⇒ is possible because of the structural
de�nition of the action of substitutions. A de�nition of substitutions by recursion on the size
of terms, be it the Curry-Feys one or one using renaming, would oblige to use size induction on
terms in this proof, with considerable disadvantage.

Now we stand quite close to establishing the con�uence of ⇒, i.e. that M ⇒M ′ and M ⇒M ′′

imply the existence of P such thatM ′ ⇒ P andM ′′ ⇒ P . Actually, a proof by induction onM ⇒
M ′ with subordinate case analysis of M ⇒M ′′ can be found in [4] and could easily be adapted
�except for the fact that it does not consider steps of ∼α conversion, since it identi�es terms
up to such relation. However, the mentioned proof may actually be considered as proceeding

3.4. BETA-REDUCTION AND THE CHURCH-ROSSER THEOREM 33

by induction on our ⇒0 relation of reduction and used as a basis for formalisation within our
framework. We therefore adopt the following strategy, very similar to the one employed in the
presentation in [29]:

1. We prove an ∼α-postponement lemma, to the e�ect that M ⇒ N ⇒ M ⇒0 P ∧ P ∼α N
for some P .

2. We prove that it also holds that M ∼α M ′∧M ′ ⇒ N ⇒M ⇒ N , i.e. a symmetric version
of the rule of ∼α conversion step.

3. We prove the following con�uence property: M ⇒0 M
′ andM ⇒0 M

′′ imply the existence
of P such that M ′ ⇒ P and M ′′ ⇒ P .

From these results it is rather direct to show the desired:

Lemma 11 (Con�uence of parallel reduction). M ⇒ M ′ and M ⇒ M ′′ ⇒ (∃P)(M ′ ⇒
P and M ′′ ⇒ P).

M ⇒M ′ ∧ M ⇒M ′′

⇒ (∼α postponement)

M ⇒0 M
′
0 ∧ M ⇒M ′′0 with M ′0 ∼α M ′ ∧ M ′′0 ∼α M ′′

⇒ (con�uence, i.e. property 3 above)

(∃P)(M ′0 ⇒ P ∧M ′′0 ⇒ P) with M ′ ∼α M ′0 ∧ M ′′ ∼α M ′′0
⇒ (property 2 above)

(∃P)(M ′ ⇒ P ∧M ′′ ⇒ P).

�

The lemmas of the enumeration above are as follows:

Lemma 12 (Postponement of ∼α steps). M ⇒ N ⇔ M ⇒0 P ∧ P ∼α N for some P .

The direction from right to left obtains directly by observing that M ⇒0 P implies M ⇒ P and
application of the last rule of the de�nition of ⇒, i.e. that of ∼α conversion step. The direction
from left to right is an easy induction on ⇒. �

Actually, a symmetric form of the converse of this result also holds, i.e. one that could be called
of �prepending� of ∼α conversion steps:

Lemma 13. M ∼α P ∧ P ⇒0 N ⇒ M ⇒ N .

The proof is by induction on M . In the case of applications, two subcases have to be considered
depending on the rule employed for performing ⇒0. In the case of abstractions, part 3 of
Corollary 5 is applied. �

Using the latter it is direct to show the symmetric of the rule of ∼α steps of the de�nition of ⇒:

Lemma 14. M ∼α P ∧ P ⇒ N ⇒ M ⇒ N .

M ∼α P ∧ P ⇒ N
⇒ (∼α postponement)

M ∼α P ∧ P ⇒0 P0 ∧ P0 ∼α N
⇒ (Lemma 13)

34 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

M ⇒ P0 ∧ P0 ∼α N
⇒ (Rule of ∼α step)

M ⇒ N .

�

It only remains to establish the following con�uence result:

Lemma 15. M ⇒0 M
′ and M ⇒0 M

′′ ⇒ (∃P)(M ′ ⇒ P and M ′′ ⇒ P).

The proof is essentially the standard induction on M ⇒0 M
′ with subordinate case analysis of

M ⇒0 M
′′, as developed in [4]. Working on ⇒0, as established by our strategy above, alleviates

signi�cantly the number of combinations to be considered. Let us illustrate some of the detail
involved by analyzing the case of the rule of parallel reduction of applications. We therefore
put ourselves in the position that MN ⇒0 M

′N ′, with both M ⇒0 M
′ and N ⇒0 N

′. If now
in addition MN ⇒0 Q, it turns out that there are two cases by way of which this may come
about. The �rst one is that Q = M ′′N ′′ with both M ⇒0 M

′′ and N ⇒0 N
′′, i.e. by use of

the rule of parallel reduction of applications. But then, just by the induction hypotheses, we get
that there exist P1 and P2 such that, on the one hand side, M ′ ⇒ P1 and M ′′ ⇒ P1 and, on
the other N ′ ⇒ P2 and N ′′ ⇒ P2. Therefore, M ′N ′ ⇒ P1P2 and M ′′N ′′ ⇒ P1P2, as desired.
The second case is when MN ⇒0 Q is arrived at by use of the β-parallel reduction rule. Then
it must be M = λxM0 and Q = M ′′0 (ι, x:=N ′′) with M0 ⇒0 M

′′
0 and N ⇒0 N

′′. Now, in the
�rst place, we get by induction hypothesis that, from N ⇒0 N

′ and N ⇒0 N
′′ it follows that

there exists P1 such that both N ′ ⇒ P1 and N ′′ ⇒ P1. On the other hand, by analysis of the
rules of parallel reduction of abstractions, we must haveM ′ = λxM ′0 and, sinceM0 ⇒0 M

′′
0 , also

λxM0 ⇒0 λxM
′′
0 . Hence, by induction hypothesis, there exists P such that both λxM ′0 ⇒ P

and λxM ′′0 ⇒ P . But, by the lemma of postponement of ∼α-conversion steps, we now that there
must exist also P ′ ∼α P such that both λxM ′0 ⇒0 P

′ and λxM ′′0 ⇒0 P
′. Further, by analysis

of the rules of parallel reduction of abstractions, it must be P ′ = λxP0 with both M ′0 ⇒0 P0

and M ′′0 ⇒0 P0. Therefore what we had at the beginning was that (λxM0)N ⇒0 (λxM ′0)N ′

and (λxM0)N ⇒0 M
′′
0 (ι, x:=N ′′). But now (λxM ′0)N ′ ⇒ P0(ι, x:=P1) by use of the β-parallel

reduction rule and, on the other hand, M ′′0 (ι, x:=N ′′)⇒ P0(ι, x:=P1) by the substitution lemma
of ⇒. This gives us the desired con�uence.
�

Now we proceed to the following:

Lemma 16. If a reduction relation R is con�uent, then so is its re�exive and transitive closure
R∗.

The proof is standard, by a double induction. �

Corollary 7. ⇒∗ is con�uent. �

If we now write � for the relation of β reduction, we have:

Lemma 17. � = ⇒∗,

from which we �nally arrive at:

Theorem 1 (Church-Rosser). Beta-reduction is con�uent. �

3.5. ASSIGNMENT OF SIMPLE TYPES 35

It only remains to discuss the proof of Lemma 17, which is actually completely standard. We
namely prove that:

1. One-step β-reduction→ is included in⇒. The relation→ is the contextual, i.e. compatible
with the syntactic constructors, closure of the simple relation of β-contraction, augmented
with ∼α. The proof proceeds by a corresponding simple induction. It follows that β-
reduction � = →∗ is included in ⇒∗.

2. ⇒ is included in �. It then follows that ⇒∗ is included in �∗ = �. This proof is also by
a direct induction on ⇒. Let us show the interesting case, corresponding to the β-parallel
reduction rule:

We have M ⇒ M ′ and N ⇒ N ′ and need to prove (λxM)N � M ′(ι, x:=N ′). Now, by
induction hypotheses, we get both M �M ′ and N � N ′, and reason as follows:

M �M ′

⇒ (By compatibility of � with the syntactic constructors)

λxM � λxM ′

⇒ (Idem, using N � N ′)

(λxM)N � (λxM ′)N ′

⇒ (Transitivity of �, using (λxM ′)N ′ �M ′(ι, x:=N ′))

(λxM)N �M ′(ι, x:=N ′).
�

3.5 Assignment of Simple Types

Let now ν be a syntactic category of ground types. Then the category of simple types is given
by the following grammar:

α, β ::= ν | α→ β.

We consider contexts of variable declarations as lists thereof. These lists are actually the imple-
mentation of �nite tables, i.e. we will have the following operations and relations on contexts:

• The empty context ·.

• The update of a context Γ with a declaration x : α, to be written Γ, x : α. As explained
below, adding a declaration of a variable overrides any prior declaration for the same
variable.

• We will write x ∈dom Γ the fact that x is declared in Γ.

• A lookup operation returning the type of any variable declared in a context. For context
Γ and variable x this is to be written Γx. This operation therefore satis�es:

(Γ, x : α)x =def α
(Γ, y : α)x =def Γx if y 6= x.

• A relation of inclusion (or extension) between contexts de�ned as follows:

Γ 4 ∆ =def x ∈dom Γ⇒ (x ∈dom ∆ ∧ ∆x = Γx).

36 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

The system of assignment of simple types to pure terms is de�ned inductively by the following
rules:

x ∈dom Γ
Γ ` x : Γx

Γ `M : α→ β Γ ` N : α

Γ `MN : β

Γ, x : α `M : β

Γ ` λx.M : α→ β

The system satis�es the following weakening lemmas:

Proposition 12 (Weakening).

1. Γ 4 ∆ ⇒ Γ `M : α ⇒ ∆ `M : α.

2. x #M ⇒ Γ `M : α ⇒ Γ, x : β `M : α.

The proofs proceed by induction on the type system. The second result uses the �rst one for the
case of functional abstractions �

The assignment of types extends itself to substitutions, as follows:

σ : Γ→ ∆ =def x ∈dom Γ⇒ ∆ ` σ x : Γx.

That σ is assigned the �type� Γ→ ∆ amounts therefore to consider its restriction to the variables
declared in Γ. Then the terms assigned to those variables in σ must respect the declarations in Γ,
depending in turn on the declarations in ∆. It shows convenient to consider as well restrictions
of these typed substitutions to (the free variables of) terms, in the following way:

(σ : Γ→ ∆) �M =def x ∗M ⇒ x ∈dom Γ⇒ ∆ ` σ x : Γx.

Most often, but not necessarily, the termM in these restrictions will be such that Γ `M : α and
therefore its free variables shall all be declared in Γ. It could be argued that it is preferable from
a theoretical point of view to introduce instead restrictions of contexts relative to given terms
and leave unmodi�ed the general notion of typed substitution. We have, however, found that
the present formulation leads to a more direct formalisation. Some useful properties concerning
typing and substitutions are put together in the following proposition:

Proposition 13.

1. ι : Γ→ Γ.

2. Γ `M : α ⇒ (ι, x:=M) : Γ, x : α→ Γ.

3. σ : Γ→ ∆ ⇒ (σ : Γ→ ∆) �M .

4. (ι, y:=x : Γ, y : α→ Γ, x : α) �M(ι, x:=y).

5. x #σ � λyM ∧ (σ : Γ→ ∆) � λyM ⇒ (σ, y:=x : Γ, y : α→ ∆, x : α) �M .

The �rst four items are direct. For the last one, use that, given z such that z ∗ M and
z ∈ dom (Γ, y : α), either z = y or z 6= y. In the �rst case the result is immediate. In the
second, we have both (σ, y:=x) z = σ z and (Γ, y : α) z = Γ z; now ∆ ` σ z : Γ z follows from
z ∗M and z 6= y, hence z ∗λyM , and (σ : Γ→ ∆) � λyM . Finally, apply part 2 of the weakening
lemma using that x #σ � λyM implies x #σ z. �

3.5. ASSIGNMENT OF SIMPLE TYPES 37

We �nally arrive at the crucial substitution lemma:

Lemma 18 (Substitution lemma for type assignment). Γ `M : α⇒ σ : Γ→ ∆ ⇒ ∆ `Mσ : α.

This is obtained from the following lemma using part 3 of proposition 13:

Lemma 19. Γ `M : α ⇒ (σ : Γ→ ∆) �M ⇒ ∆ `Mσ : α.

The proof is by induction on Γ ` M : α. For the interesting case of abstractions, we have the
premise Γ, x : α `M : β and (σ : Γ→ ∆) � λxM . Now it obtains

∆ ` (λxM)σ : α→ β
⇐ (action of substitution, with z = χ(σ � λxM))

∆ ` λzM(σ, x:=z) : α→ β
⇐ (typing rule for abstractions)

∆, z : α `M(σ, x:=z) : β
⇐ (induction hypothesis)

(σ, x:=z : Γ, x : α→ ∆, z : α) �M
⇐ (Proposition 13, part 5)

z = χ(σ � λxM) #σ � λxM and (σ : Γ→ ∆) � λxM .

�

Again, the former induction on the type system is possible because of the structural de�nition
of the action of substitutions.

It is now direct to get:

Lemma 20. Typing is preserved by β-contraction.

Γ ` (λxM)N : β
⇒ (typing rules)

Γ, x : α `M : β and Γ ` N : α
⇒ (Proposition 13, part 2)

ι, x:=N : Γ, x : α→ Γ
⇒ (Substitution Lemma)

Γ `M(ι, x:=N) : β.
�

Now, by simple induction on the contextual closure it follows that:

Corollary 8. One step β-reduction preserves typing. �

We now turn to showing that typing is compatible with ∼α too. Firstly we obtain:

Lemma 21. Γ `Mι : α ⇔ Γ `M : α.

The direction from right to left follows immediately from the substitution lemma and part 1 of
Proposition 13. The converse goes by induction on the typing relation. The non-trivial case of
abstractions is as follows:

38 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

Γ ` (λxM)ι : α→ β
⇒ (action of substitution, with z = χ(ι � λxM))

Γ ` λzM(ι, x:=z) : α→ β
⇒ (typing rules)

Γ, z : α `M(ι, x:=z) : β
⇒ (Proposition 13 part 4 and Lemma 20)

Γ, x : α `M(ι, x:=z)(ι, z:=x) : β
⇒ (z = χ(ι � λxM) # ι � λxM)

Γ, x : α `Mι : β
⇒ (induction hypothesis)

Γ, x : α `M : β
⇒ (typing rule for abstractions)

Γ ` λxM : α→ β.
�

Thence we arrive at:

Lemma 22. Γ `M : α and M ∼α N ⇒ Γ ` N : α,

using normalisation by ι as follows:

Γ `M : α
⇒ (Lemma 21)

Γ `Mι : α
⇒ (Corollary 1, i.e. M ∼α N ⇒Mι = Nι)

Γ ` Nι : α
⇒ (Lemma 21)

Γ ` N : α.
�

We now are able to conclude with

Theorem 2 (Subject Reduction). Γ `M : α and M � N ⇒ Γ ` N : α

which follows by an easy induction using Corollary 8 and Lemma 22 for the base cases. �

3.6 Conclusions

To our mind, the present work contributes two things:
Firstly, it shows that what we have called the �historical� approach to the meta-theory of the
Lambda calculus can be carried out in a completely formal manner so as to scale up to the
principal results of the theory. By �historical approach� we mean the one initiated by Curry-
Feys [16] and continued at least partly by Hindley and Seldin [29], which consists in treating
the calculus in its original syntax �with one sort of names for both free and bound variables�,
granting substitution a more basic status than that of α-conversion, and working all the time

3.6. CONCLUSIONS 39

with concrete terms, i.e. without identifying terms up to α-conversion. The formal treatment is
made feasible because of the use of Stoughton's substitution, which has shown therefore to be
the appropriate one for this kind of syntax.
Within the general approach to syntax chosen, the main work to compare is the one by Vester-
gaard and Brotherston [68] which uses modi�ed rules of α-conversion and β-reduction based on
unary substitution to formally prove the Church-Rosser theorem in Isabelle-HOL. Substitution
does not proceed in cases of capture and they use explicit α-conversion to perform the renaming
achieved by our substitution. As a consequence, the Church-Rosser theorem requires an adminis-
trative layer of reasoning for showing that α-conversion and β-reduction interact correctly. This
consists in a rather complex de�nition of a new auxiliary relation for α-conversion, which we do
not need. On the other hand, they only use structural principles of induction, either on terms
or on relations. As already indicated and commented again below, our use of size induction is
not essential, but only convenient for simplifying the presentation of the theory of α-conversion
with respect to Stoughton's [61]. Besides, thanks to the use of the multiple form of substitution
de�ned uniformly by structural recursion, we have been able to employ standard strategies for
achieving the two principal results, namely con�uence and preservation of typing by β-reduction.

Our second contribution consists in presenting Stoughton's theory of substitutions in a new way.
First of all, it is based on inductive types and relations, instead of on ordinary set theory. Be-
sides, it presents the following features: (1) It bases itself upon the notion of restriction of a
substitution to (the free variables of) a term. As a consequence we have used the corresponding
�nite notions of equality and α-equivalence, whereas Stoughton and the formalisation by Lee [33]
use extensional, and thus generally undecidable, equality �in the case of the formalisation, via
an ad-hoc postulate in type theory. The extensional equality could have also been avoided by
keeping track of the �nite domain of each substitution, given that these are identity almost ev-
erywhere. But it actually turns out that the relevant relations concerning substitution in this
theory are most conveniently formulated as concerning restrictions, which is due to the fact that
the behavior of substitutions manifests itself in interaction with terms.
(2) Alpha-equivalence is given as a strictly syntax-directed inductive de�nition, which is eas-
ily proven to be an equivalence relation and therefore a congruence. This stands in contrast
to Stoughton's work, which starts with a de�nition of α-conversion as the least congruence
generated by a simple renaming of bound variable �a de�nition comprising six rules, whereas
ours consists of three. Stoughton's whole development is then directed towards characterising
α-conversion in the form of a syntax-based de�nition that contains nevertheless two rules cor-
responding to abstractions. This therefore gives a neat result standing in correspondence with
ours; but the proof is surprisingly dilatory, requiring among others the substitution lemma for
α-conversion. The issue manifests itself also in a rather involved character of Lee's formalisation,
as witnessed by his own comments in [33]. Two lemmas are crucial in the whole development,
whatever strategy is taken: The �rst is the one stating that substitutions equalize α-equivalent
terms, i.e. M ∼α N ⇒ M σ = N σ. This is very directly proven in our case by induction
on ∼α due to the symmetric character of the rule for abstractions, which is not the case for
Stoughton's version of ∼α and gives rise to the di�culties pointed out above. The second impor-
tant lemma is the one stating that equality under the identity substitution implies α-equivalence,
i.e. M ι = N ι ⇒ M ∼α N . This one is very easily proven by Stoughton using symmetry and
transitivity of ∼α, since these properties are available from the beginning, whereas we need to
proceed by induction on the length ofM . The latter might be argued to depart from Stoughton's
original goals to simplify the methods of reasoning generally employed. Now, as a matter of fact,
it has been the only one point in which a principle of induction other than just structural has
been used in our proofs and, to our mind, the overall cost of the development pays o� such

40 CHAPTER 3. STOUGHTON'S MULTIPLE SUBSTITUTION

expenditure. Speci�cally, our proof that ∼α is a congruence is �nally quite concise and down to
the point, not needing in particular the substitution lemma. The induction on the size of terms
could be straightforwardly encoded in Agda using library functions.

As further work, concerning the formalisation of the metatheory of the Lambda calculus, we could
complete the presentation with proofs of the Standarisation Theorem and of Strong Normalisation
of the system with simple types. We also believe it interesting to investigate the generalisation
of the approach to systems of languages with binders as e.g. the one presented in [54].

CHAPTER 4

Alpha-Structural Induction and Recursion Part I -
Substitution Lemmas

In this chapter we reproduce the article �Alpha-Structural Induction and Recursion for the
Lambda Calculus in Constructive Type Theory�, published in Electronic Notes in Computer
science [13]. In this work we present another formalisation of the λ-calculus in Constructive
Type Theory, this time basing α-conversion upon the name swapping operation. We formulate
principles of induction and recursion, which allow to work modulo α-conversion. These princi-
ples are all derived from the simple structural induction principle on concrete terms, and aim at
reproducing the use of the BVC in pen-and-paper works, while trying to hide all its complexity
in the rigorous context of a proof assistant. We work out applications to some fundamental
meta-theoretical results, such as the substitution lemma for α-conversion and the substitution
composition lemma. The whole work is implemented in the Agda proof assistant [46]. In this
work my contribution was the conception of the right α-induction and recursion principles, as
well as the whole codi�cation in Agda.

4.1 Introduction

We are interested in methods for formalising in constructive type theory the meta-theory of the
lambda-calculus. The main reason for this is that the lambda calculus is both a primigenial
programming language and a prime test bed for formal reasoning on tree structures that feature
(name) binding.

Speci�cally concerning the latter, the informal procedure consists to begin with in �identifying
terms up to α-conversion�. However, this is not simply carried out when functions are de�ned
by recursion and properties proven by induction. The problem has to do with the fact that
the consideration of the α-equivalence classes is actually conducted through the use of conve-
nient representatives thereof. These are chosen by the so-called Barendregt Variable Convention
(BVC): each term representing its α-class is assumed to have bound names all di�erent and
di�erent from all names free in the current context. Now, a general validity criterion determines
that this procedure ought to be accompanied in all cases by the veri�cation that the proofs and
results of functions depend only on the α-class and do not vary with the particular choice of the
representative in question. Such veri�cation is seldom accomplished but yet it is not the main

41

42 CHAPTER 4. SUBSTITUTION LEMMAS

di�culty concerning the validity of the constructions so performed. The crucial point is that
e.g. inductive proofs are often carried out employing the structural principle for concrete terms
�and then it may well happen that an induction step corresponding to functional abstractions
can be carried out for a conveniently chosen bound name but not for an arbitrary one as the
principle requires.

The problem can be avoided by the use of de Bruijn's nameless syntax [17] or its more up-to-
date version locally nameless syntax [2,7], which uses names for the free or global variables and
the indices counting up to the binding abstractor for the occurrences of local parameters. But
these methods are not without overhead in the form of several operations or well-formedness
predicates. As a result, there certainly is a relief in not having to consider α-conversion; but,
at the same time, the nameless syntax seriously a�ects the connection between actual formal
procedures and what could be considered the natural features of syntax. The same has to be
said of the map representation introduced in [38].

A di�erent alternative is to replace the (as explained above, problematic) use of structural induc-
tion and recursion principles on concrete terms by that of so-called alpha-structural principles
working directly on the α-equivalence classes. This means providing principles that allow to
prove properties by induction and to de�ne functions by recursion by direct use of the BVC, so
as to ease the burden associated to the veri�cation of the validity of the procedure.

A �rst attempt in this direction is [28], which gives an axiomatic description of lambda terms in
which equality embodies α-conversion and that provides a method of de�nition of functions by
recursion on such type of objects. This work ultimately rests upon the use of higher-order ab-
stract syntax within the HOL system, and a theoretical model using de Bruijn's nameless syntax
is sketched to show the soundness of the system of axioms. In [24,53,54], models of syntax with
binders are introduced which formulate the basic concepts of abstraction, α-equivalence and a
name being �su�ciently fresh� in a mathematical object, on the basis of the simple operation of
name swapping. This theory �which has become known as nominal abstract syntax� provides
a framework of (�rst-order) languages with binding with associated principles of α-structural
recursion and induction that are based on the veri�cation of the non-dependence of the mathe-
matical objects in the current context, as well as of the results of step functions used in recursive
de�nitions, on the bound names chosen for the representatives of the α-classes involved. Imple-
mentations of this approach have been tried in Isabelle/HOL [66] and Coq [1]. In the �rst case
the solution rests upon a weak version of higher-order abstract syntax, whereas the second one is
an axiomatisation in which �similarly to [28] cited above� equality is postulated as embodying
α-conversion and a model of the system based on locally nameless syntax has been constructed.

Yet another approach to the formulation of the alpha-structural principles originates in the
observation that, if the property to be tried is α-compatible �i.e., it is actually a property of
the α-classes and not just of the concrete terms� then (complete) induction on the size of terms
can be used to bridge over the possible gap pointed out above in proofs by induction that con�ne
themselves to convenient choice of bound names. Indeed, suppose you need to prove P(λx.M);
now, if what you have is a step from P(M∗) to P(λx∗.M∗) for a convenient renaming of the term,
then you will be able to use your strong size-induction hypothesis onM∗, since this is still of a size
lesser than that of P(λx.M). Hence you will arrive at P(λx∗.M∗) and from there to the desired
P(λx.M) because of the α-compatibility of P. This motivates trying to provide a mechanism of
this kind to formalise the use of the BVC, and that is what we attempt in this paper. The result is
that we are able to provide principles of alpha-structural induction and recursion, implementing
the BVC in constructive type theory, using just the ordinary �rst-order, name-carrying syntax
and actually without using the strong induction on the size of the terms �i.e. we are able to

4.2. INFRASTRUCTURE 43

derive the principles in question from just simple structural induction on concrete terms. To such
e�ect we de�ne α-equivalence by using the basic concepts of nominal abstract syntax, namely
freshness and swapping of names. Equality remains the simple de�nitional one and we do not
either perform any kind of quotient construction. The whole development is implemented in the
Agda system [46].

The rest of the paper goes as follows: in section 2 we present the infrastructure just mentioned.
Section 3 presents the principles, starting from the simple structural induction on terms and
ending up with the recursion principle on α-classes. In section 4 we show several applications
that bring about certain feeling for the usefulness of the method. Finally, section 5 compares
with related work and points out conclusions and further work.

The present is actually a literate Agda document, where we hide some code for reasons of
conciseness. The entire code is available at:

https://github.com/ernius/formalmetatheory-nominal

and has been compiled with the last Agda version 2.4.2.2 and 0.9 standard library.

4.2 Infrastructure

Agda

Agda implements Constructive Type Theory [37] (type theory for short). It is actually a func-
tional programming language in which:

1. Inductive types can be introduced as usual, i.e. by enumeration of their constructors, but
they can be parameterised in objects of other types. Because of the latter it is said that
type theory features families of types (indexed by a base type) or dependent types.

2. Functions on families of types respect the dependence on the base object, which is to say
that they are generally of the form (x : α) → βx where βx is the type parameterised on
x of type α. Therefore the type of the output of a function depends on the value of the
input.

3. Functions on inductive types are de�ned by pattern-maching equations.

4. Every function of the language must be terminating. The standard form of recursion that
forces such condition is structural recursion and is, of course, syntactically checked.

5. Because of the preceding feature, type theory can be interpreted as a constructive logic.
Speci�cally, this is achieved by representing propositions as inductive types whose con-
structors are the introduction rules, i.e. methods of direct proof, of the propositions in
question.

Therefore we can say in summary that sets of data, predicates and relations are de�ned induc-
tively, i.e. by enumeration of their constructors.

https://github.com/ernius/formalmetatheory-nominal

44 CHAPTER 4. SUBSTITUTION LEMMAS

Syntax

The set Λ of terms is as usual. It is built up from a denumerable set of names, which we shall
call atoms, borrowing terminology from nominal abstract syntax.

data L : Set where
v : Atom → L

· : L → L → L

ň : Atom → L → L

The following is called the freshness relation. It holds when a variable does not occur free in a
term. Parameters to a function written between curly brackets can be omitted when invoking
the function.

data _#_ (a : Atom) : L → Set where
#v : {b : Atom} → b 6≡ a → a # v b
#· : {M N : L } → a # M → a # N → a # M · N
#ň≡ : {M : L} → a # ň a M
#ň : {b : Atom}{M : L} → a # M → a # ň b M

Next comes the fundamental operation of swapping of atoms. A �nite sequence (composition)
of atom swaps constitutes a (�nite) atom permutation which is the renaming mechanism to be
used on terms. The action of atom swaps is �rst de�ned on atoms themselves:

(_•_)a_ : Atom → Atom → Atom → Atom

(a • b)a c with c
?
=a a

... | yes _ = b

... | no _ with c
?
=a b

... | yes _ = a

... | no _ = c

Here it extends to terms:

(_•_)_ : Atom → Atom → L → L

(a • b) v c = v ((a • b)a c)
(a • b) M · N = ((a • b) M) · ((a • b) N)
(a • b) ň c M = ň ((a • b)a c) ((a • b) M)

And the same goes for permutations, which are lists of swaps:

•a : P → Atom → Atom
p •a a = foldr (l s b → (proj1 s • proj2 s)a b) a p

• : P → L → L

p • M = foldr (l s M → (proj1 s • proj2 s) M) M p

We now introduce α-conversion, denoted by ∼a. We use a syntax-directed de�nition that uses
co-�nite quanti�cation in the case of the lambda abstractions:

data _∼a_ : L → L → Set where
∼av : {a : Atom} → v a ∼a v a

4.3. ALPHA-STRUCTURAL INDUCTION AND RECURSION PRINCIPLES 45

∼a· : {M M' N N' : L} → M ∼a M' → N ∼a N'
→ M · N ∼a M' · N'

∼aň : {M N : L}{a b : Atom}(xs : List Atom)
→ ((c : Atom) → c /∈ xs → (a • c) M ∼a (b • c) N)
→ ň a M ∼a ň b N

The idea is that for proving two abstractions α-equivalent you should be able to prove the
respective bodies α-equivalent when you rename the bound names to any name not free in both
abstractions. The condition on the new name can be generalised to �any name not in a given
list�, yielding an equivalent relation. The latter condition is harder to prove, but more convenient
to use when you assume ∼a to hold, which is more often the case in the forthcoming proofs.

4.3 Alpha-Structural Induction and Recursion Principles

We start with the simple structural induction over the concrete L terms:

TermPrimInd : {l : Level}(P : L → Set l)
→ (∀ a → P (v a))
→ (∀ M N → P M → P N → P (M · N))
→ (∀ M b → P M → P (ň b M))
→ ∀ M → P M

Figure 4.1: Concrete Structural Induction Principle

The next induction principle provides a strong hypothesis for the lambda abstraction case: it
namely allows to assume the property for all renamings (given by �nite permutations of names)
of the body of the abstraction:

TermIndPerm : {l : Level}(P : L → Set l)
→ (∀ a → P (v a))
→ (∀ M N → P M → P N → P (M · N))
→ (∀ M b → (∀ p → P (p • M)) → P (ň b M))
→ ∀ M → P M

Figure 4.2: Strong Permutation Induction Principle

Notice that the hypothesis provided for the case of abstractions is akin to the corresponding
one of the principle of strong or complete induction on the size of terms, only that expressed in
terms of name permutations. This principle can be derived from the former, i.e. from simple
structural induction, in very much the same way as complete induction on natural numbers is
derived from ordinary mathematical induction. That is to say, we can use structural induction to
prove (∀π)P (π •M) given the hypotheses of the new principle, from which P M follows. For the
interesting case of abstractions, we have to prove (∀π)P (π•ň aM), which is equal to (∀π)P (ň (π•A
a) (π •M)). The hypothesis of the new principle give us in this case (∀M ′, b)((∀π′)P (π′ •M ′)→
P (ň bM ′)). Now, instantiating M ′ as π •M and b as π •A a, we obtain the desired result if we
know that (∀π′)P (π′ • π •M), which holds by induction hypothesis of the structural principle.

46 CHAPTER 4. SUBSTITUTION LEMMAS

We call a predicate α-compatible if it is preserved by α-conversion:

aCompatiblePred : {l : Level} → (L → Set l) → Set l
aCompatiblePred P = {M N : L} → M ∼a N → P M → P N

For α-compatible predicates we can use the preceding principle to derive the following:

TermaPrimInd : {l : Level}(P : L → Set l)
→ aCompatiblePred P
→ (∀ a → P (v a))
→ (∀ M N → P M → P N → P (M · N))
→ ∃ (l vs → (∀ M b → b /∈ vs → P M → P (ň b M)))
→ ∀ M → P M

This new principle enables us to carry out the proof of the abstraction case by choosing a bound
name di�erent from the names in a given list vs. It gives a way to emulate the Barendregt
Variable Convention (BVC) since, indeed, the names to be avoided will always be �nitely many;
in using the principle we must provide a list that includes them. This same principle is provided
in [1], only that we here give it a proof in terms of the ones previously introduced, instead of just
postulating it. Our aim is to employ this principle whenever possible, thereby hiding the use of
the swap operation which is con�ned to the previous principles exposed. The interesting case
in the implementation of the principle is of course that of the functional abstraction. We must
put ourselves in the position in which we are using the former strong principle and are given an
abstraction ň bM for which we have to prove P . We have to employ to this e�ect the clause of
our new principle corresponding to the functional abstractions, which forces us to employ a name
b∗ out of the given list vs. Therefore we can aspire at proving P for a renaming of the original
term, say ň b∗M∗. The required result will then follow from the α-compatibility of the predicate
P provided ň b∗M∗∼a ň bM . This imposes the condition that the name b∗ be chosen fresh in
the original term ň bM �and that M∗ = (b∗ • b)M . We know PM∗ and therefore P (ň b∗M∗)
because we know P for any renaming of M , by the hypothesis of the strong principle from which
we start.

A very important point in this implementation is that, given the list of names to be avoided,
we can and do choose b∗ deterministically for each class of α-equivalent terms. Indeed, if we
determine b∗ as e.g. the �rst name out of the given list that is fresh (i.e. not free) in the
originally given term, then the result will be one and the same for every term of each α-class,
since α-equivalent terms have the same free variables. Hence the representative of each α-class
chosen by this method will be �xed for each list of names to be avoided, which constitutes a basis
for using the method for de�ning functions on the α-classes. This will work by associating to
(each term of) the class the result of the corresponding computation on the canonically chosen
representative.

More precisely, let us say that a function f : Λ → A is strongly α-compatible i� M ∼a N ⇒
f M = f N . We can now de�ne an iteration principle over raw terms which always produces
strongly α-compatible functions. For the abstraction case, this principle also allows us to give
a list of variables from where the abstractions variables are not to be chosen. This iteration
principle is derived from the BVC induction principle (TermaPrimInd) in a direct manner, just
using a trivial constant predicate equivalent to the type A. We exhibit the type and code of the
iterator:

4.4. APPLICATIONS IN META-THEORY 47

LIt : {l : Level}(A : Set l)
→ (Atom → A)
→ (A → A → A)
→ List Atom × (Atom → A → A)
→ L → A

To repeat the idea, the iterator works as a function on α-classes because for each given abstrac-
tion, it will yield the result obtained by working on a canonically chosen representative that is
determined by the list of names to be avoided and the (free names of the) α-class in question.

Strong compatibility would not obtain if we tried directly to formulate a recursion instead of
an iteration principle, but we can recover the more general form by the standard procedure of
computing pairs one of whose components is a term. Thereby we arrive at the next recursion
principle over terms, which also generates strong α-compatible functions.

LRec : {l : Level}(A : Set l)
→ (Atom → A)
→ (A → A → L → L → A)
→ List Atom × (Atom → A → L → A)
→ L → A

4.4 Applications in Meta-Theory

We present several applications of the iteration/recursion principle de�ned in the preceding
section. In the following two sub-sections we implement two classic examples of λ-calculus theory.
In the section 4.6 we also apply our iteration/recursion principle to the examples of functions
over terms presented in [48]. This work presents a sequence of increasing complexity functions,
with the purpose of testing the applicability of recursion principles over λ-calculus terms.

Free Variables

We implement the function that returns the free variables of a term.

fv : L → List Atom
fv = LIt (List Atom) [_] _++_ ([] , l v r → r - v)

As a direct consequence of strong α-compatibility of the iteration principle we have that α-
equivalent terms have the same free variables.

The relation _*_ holds when a variable occurs free in a term.

data _*_ : Atom → L → Set where
*v : {x : Atom} → x * v x
*·l : {x : Atom}{M N : L} → x * M → x * (M · N)
*·r : {x : Atom}{M N : L} → x * N → x * (M · N)
*ň : {x y : Atom}{M : L} → x * M → y 6≡ x → x * (ň y M)

We can use our BVC-like induction principle to prove the following proposition:

48 CHAPTER 4. SUBSTITUTION LEMMAS

Pfv* : Atom → L → Set
Pfv* a M = a ∈ fv M → a * M

In the case of lambda abstractions we are able to simplify the proof by choosing the bound name
di�erent from a. This �exibility comes at a cost, i.e. we need to prove that the predicate Pfv*a is
α-compatible in order to use the chosen induction principle. This α-compatibility proof is direct
once we prove that * is an α-compatible relation and the fvfunction is strong α-compatible. The
last property is direct because we implemented fvwith the iteration principle, so the extra cost
is just the proof that * is α-compatible. This in turn could be directly obtained if we de�ned the
relation establishing that a variable a is free in a term as a recursive function, as follows:

free : Atom → L → Set
(_free_) a = LIt Set (l b → a ≡ b) _]_ ([a] , l _ → id)

For the variable case we return the propositional equality of the searched variable to the term
variable. The application case is the disjoint union of the types returned by the recursive calls.
Finally, in the abstraction case we can choose the abstraction variable to be di�erent from the
searched one. In this way we can ignore the abstraction variable and return just the recursive
call containing the evidence of any free occurrence of the searched variable in the abstraction
body. This implementation is strong compatible by construction because we have built it from
our iterator principle, so it is also immediate from this de�nition that α-equivalent terms have
the same free variables.

Substitution

We implement capture avoiding substitution in the following way:

hvar : Atom → L → Atom → L

hvar x N y with x
?
=a y

... | yes _ = N

... | no _ = v y
�

[:=_] : L → Atom → L → L

M [a := N] = LIt L (hvar a N) _·_ (a :: fv N , ň) M

It shows to be quite close to the simple pencil-and-paper version assuming the BVC. Notice that
we explicitly indicate that the bound name of the canonical representative to be chosen must be
di�erent from the replaced variable and not occur free in the substituted term. Again because
of the strong α-compatibility of the iteration principle we obtain the following result for free:

lemmaSubst1 : {M N : L}(P : L)(a : Atom)
→ M ∼a N
→ M [a := P] ≡ N [a := P]

lemmaSubst1 {M} {N} P a
= lemmaLItStrongaCompatible

L (hvar a P) _·_ (a :: fv P) ň M N

Using the induction principle in �gure 4.2 we prove:

4.4. APPLICATIONS IN META-THEORY 49

lemmaSubst2 : ∀ {N} {P} M x
→ N ∼a P → M [x := N] ∼a M [x := P]

From the two previous results we directly obtain the α-substitution lemma:

lemmaSubst : {M N P Q : L}(a : Atom)
→ M ∼a N → P ∼a Q
→ M [a := P] ∼a N [a := Q]

lemmaSubst {M} {N} {P} {Q} a M∼N P∼Q
= begin

M [a := P]
≈〈 lemmaSubst1 P a M∼N 〉

N [a := P]
∼〈 lemmaSubst2 N a P∼Q 〉

N [a := Q]
�

In turn, with the preceding result we can derive that our substitution operation is α-equivalent
with a naïve one for fresh enough bound names:

lemmaň∼[] : ∀ {a b P} M → b /∈ a :: fv P
→ ň b M [a := P] ∼a ň b (M [a := P])

We can combine this last result with the TermaPrimInd principle which emulates BVC convention,
and mimic in this way pencil-and-paper inductive proofs over α-equivalence classes of terms about
substitution operation. As an example we show next the substitution composition lemma:

PSC : ∀ {x y L} N → L → Set
PSC {x} {y} {L} N M = x 6≡ y → x /∈ fv L
→ (M [x := N]) [y := L] ∼a (M [y := L])[x := N [y := L]]

We �rst give a direct equational proof that PSC predicate is α-compatible:

aCompatiblePSC : ∀ {x y L} N → aCompatiblePred (PSC {x} {y} {L} N)
aCompatiblePSC {x} {y} {L} N {M} {P} M∼P PM x 6≡y x/∈fvL

= begin
(P [x := N]) [y := L]

� Strong a compatibility of inner substitution operation

≈〈 cong (l z → z [y := L]) (lemmaSubst1 N x (s M∼P)) 〉
(M [x := N]) [y := L]

� We apply that we know the predicate holds for M

∼〈 PM x 6≡y x/∈fvL 〉
(M [y := L]) [x := N [y := L]]

� Strong a compatibility of inner substitution operation

≈〈 cong (l z → z [x := N [y := L]]) (lemmaSubst1 L y (M∼P)) 〉
(P [y := L]) [x := N [y := L]]

�

For the interesting abstraction case of the α-structural induction over the lambda term, we
assume the abstraction variables in the term are not among the replaced variables or free in
the substituted terms. In this way the substitution operations become α-compatible to naïve

50 CHAPTER 4. SUBSTITUTION LEMMAS

substitutions, and the induction hypothesis allows us to complete the inductive proof in a direct
maner. The code fragment becomes:

begin
(ň b M [x := N]) [y := L]

� Inner substitution is a equivalent

� to a naive one because b /∈ x :: fv N

≈〈 lemmaSubst1 L y (lemmaň∼[] M b/∈x::fvN) 〉
(ň b (M [x := N])) [y := L]

� Outer substitution is a equivalent

� to a naive one because b /∈ y :: fv L

∼〈 lemmaň∼[] (M [x := N]) b/∈y::fvL 〉
ň b ((M [x := N]) [y := L])

� We can now apply our inductive hypothesis

∼〈 lemma∼aň (IndHip x 6≡y x/∈fvL) 〉
ň b ((M [y := L]) [x := N [y := L]])

� Outer substitution is a equivalent

� to a naive one because b /∈ x :: fv N [y := L]

∼〈 s (lemmaň∼[] (M [y := L]) b/∈x::fvN[y:=L]) 〉
(ň b (M [y := L])) [x := N [y := L]]

� Inner substitution is a equivalent

� to a naive one because b /∈ y :: fv L

≈〈 sym (lemmaSubst1 (N [y := L]) x (lemmaň∼[] M b/∈y::fvL)) 〉
(ň b M [y := L]) [x := N [y := L]]

�

Remarkably these results are directly derived from the �rst primitive induction principle, and no
induction on the length of terms or accessible predicates were needed in all of this formalization.

4.5 Conclusions

The main contribution of this work is a full implementation in Constructive Type Theory of
principles of induction and recursion allowing to work on α-classes of terms of the lambda calcu-
lus. The crucial component seems to be what we called a BVC-like induction principle allowing
to choose the bound name in the case of the abstractions so that it does not belong to a given
list of names. This principle is, on the one hand, derived (for α-compatible predicates) from
ordinary structural induction on concrete terms, thus avoiding any form of induction on the size
of terms or other more complex forms of induction. And, on the other hand, it gives rise to
principles of recursion that allow to de�ne functions on α-classes, speci�cally, functions giving
identical results for α-equivalent terms. We have also shown by way of a number of examples
that the principles provide a �exible framework quite able to pleasantly mimic pencil-and-paper
practice.

Our work departs from e.g. [54] in that we do �x the choice of representatives for implementing the
alpha-structural recursion thereby forcing this principle to yield identical results for α-equivalent
terms. This might be a little too concrete but, on the other hand, it gives us the possibility of
completing a simple full implementation on an existing system, as di�erent from other works
which base themselves on postulates or more sophisticated systems of syntax or methods of

4.6. APPENDIX: ITERATION/RECURSION APPLICATIONS 51

implementation.

We wish to continue exploring the capabilities of this method of formalisation by studying its
application to the meta-theory of type systems. We also wish to deepen its comparison to the
method based on Stoughton's substitutions [61], which we started to investigate in [64] and which
we believe can give rise to formulations similar to the one exposed here.

4.6 Appendix: Iteration/Recursion Applications

In the following sections we successfully apply our iteration/recursion principle to all the ex-
amples from [48]. This work presents a sequence of functions whose de�nitions are increasing
in complexity to provide a test for any principle of function de�nition, where each of the given
functions respects the α-equivalence relation.

Case Analysis and Examining Constructor Arguments

The following family of functions distinguishes between constructors returning the constructor
components, giving in a sense a kind of pattern-matching.

isV ar : Λ→ Maybe (V ariable)
isV ar (v x) = Just
isV ar (M ·N) = Nothing
isV ar (λxM) = Nothing

isApp : Λ→ Maybe (Λ× Λ)
isApp (v x) = Nothing
isApp (M ·N) = Just(M,N)
isApp (λxM) = Nothing

isAbs : Λ→ Maybe (V ariable× Λ)
isAbs (v x) = Nothing
isAbs (M ·N) = Nothing
isAbs (λxM) = Just(x,M)

Next we present the corresponding encodings into our iteration/recursion principle:

isVar : L → Maybe Atom
isVar = LIt (Maybe Atom)

just
(l _ _ → nothing)
([] , l _ _ → nothing)

�

isApp : L → Maybe (L × L)
isApp = LRec (Maybe (L × L))

(l _ → nothing)
(l _ _ M N → just (M , N))
([] , l _ _ _ → nothing)

�

isAbs : L → Maybe (Atom × L)
isAbs = LRec (Maybe (Atom × L))

(l _ → nothing) (l _ _ _ _ → nothing)
([] , l a _ M → just (a , M))

52 CHAPTER 4. SUBSTITUTION LEMMAS

Simple recursion

The size function returns a numeric measurement of the size of a term.

size : Λ→ N
size (v x) = 1
size (M ·N) = size(M) + size(N) + 1
size (λxM) = size(M) + 1

size : L → N
size = LIt N (const 1) (l n m → suc n + m) ([] , l _ n → suc n)

Alpha Equality

This function decides the α-equality relation between two terms.

equal : L → L → Bool
equal = LIt (L → Bool) vareq appeq ([] , abseq)

where
vareq : Atom → L → Bool
vareq a M with isVar M
... | nothing = false

... | just b = b a ?
=a b c

appeq : (L → Bool) → (L → Bool) → L → Bool
appeq fM fN P with isApp P
... | nothing = false
... | just (M' , N') = fM M' ∧ fN N'
abseq : Atom → (L → Bool) → L → Bool
abseq a fM N with isAbs N
... | nothing = false

... | just (b , P) = b a ?
=a b c ∧ fM P

Observe that isAbs function also normalises N, so it is correct in the last line to ask if the two
bound names are the same.

Recursion Mentioning a Bound Variable

The enf function is true of a term if it is in η-normal form. It invokes the fv function, which
returns the set of a term's free variables and was previously de�ned.

enf : Λ→ Bool
enf (v x) = True
enf (M ·N) = enf(M) ∧ enf(N) + 1
enf (λxM) = enf(M) ∧ (∃N, x/isApp(M) == Just(N, v x)⇒ x ∈ fv(N))

⇒ : Bool → Bool → Bool
false ⇒ b = true
true ⇒ b = b
�

4.6. APPENDIX: ITERATION/RECURSION APPLICATIONS 53

enf : L → Bool
enf = LRec Bool (const true) (l b1 b2 _ _ → b1 ∧ b2) ([] , absenf)

where
absenf : Atom → Bool → L → Bool
absenf a b M with isApp M
... | nothing = b
... | just (P , Q) = b ∧ (equal Q (v a) ⇒ a ∈b (fv P))

Recursion with an Additional Parameter

Given the ternary type of possible directions to follow when passing through a term (Lt,Rt, In),
corresponding to the two sub-terms of an application constructor and the body of an abstraction,
return the set of paths (lists of directions) to the occurrences of the given free variable in a term.
Assume cons insert an element in front of a list.

vposns : V ariable× Λ→ List (List Direction)
vposns (x, v y) = if (x == y) then [[]] else []
vposns (x,M ·N) = map (cons Lt) (vposns x M) ++

map (cons Rt) (vposns x N)
x 6= y ⇒ vposns (x, λyM) = map (cons In) (vposns x M)

Notice how the condition guard of the abstraction case is translated to the list of variables from
where not to choose the abstraction variable.

data Direction : Set where
Lt Rt In : Direction

�

vposns : Atom → L → List (List Direction)
vposns a = LIt (List (List Direction)) varvposns appvposns ([a] , absvposns)

where
varvposns : Atom → List (List Direction)

varvposns b with a
?
=a b

... | yes _ = [[]]

... | no _ = []
appvposns : List (List Direction) → List (List Direction)
→ List (List Direction)

appvposns l r = map (_::_ Lt) l ++ map (_::_ Rt) r
absvposns : Atom → List (List Direction) → List (List Direction)
absvposns a r = map (_::_ In) r

Recursion with Varying Parameters and Terms as Range

A variant of the substitution function, which substitutes a term for a variable, but further
adjusts the term being substituted by wrapping it in one application of the variable named "0"
per traversed binder.

54 CHAPTER 4. SUBSTITUTION LEMMAS

sub′ : Λ× V ariable× Λ → Λ
sub′ (P, x, v y) = if (x == y) then P else (v y)
sub′ (P, x,M ·N) = (sub′(P, x,M)) · (sub′(P, x,N))

y 6= x ∧
y 6= 0 ∧
y 6∈ fv(P)

⇒ sub′ (P, x, λyM) = λy(sub′((v 0) ·M,x,M))

To implement this function with our iterator principle we must change the order of the parame-
ters, so our iterator principle now returns a function that is waiting for the term to be substituted.
In this way we manage to vary the parameter through the iteration.

hvar : Atom → Atom → L → L

hvar x y with x
?
=a y

... | yes _ = id

... | no _ = l _ → (v y)
�

sub' : Atom → L → L → L

sub' x M P = LIt (L → L)
(hvar x)
(l f g N → f N · g N)
(x :: 0 :: fv P , l a f N → ň a (f ((v 0) · N)))
M P

CHAPTER 5

Alpha-Structural Induction and Recursion Part II -
Church-Rosser and Subject Reduction

In this chapter we continue the work started in the previous chapter, formulating new induction
principles for the λ-calculus with α-conversion based upon name swapping. We successfully
apply those induction principles to obtain some fundamental meta-theoretical results, such as
the Church-Rosser theorem and the Subject Reduction theorem for the simply typed λ-calculus
à la Curry. The whole development has been machine-checked using the system Agda. Part
of this work has been accepted for publication in the 12th Workshop on Logical and Semantic
Frameworks with Applications (LSFA 2017).

5.1 Introduction

In the work presented in the preceding chapter we presented an α-induction principle (which
we called TermaPrimInd) that enables us to carry out the proof of the lambda-abstraction case
of the induction by choosing a bound name di�erent from the names in a given list of names,
thus emulating the BVC. Our induction principle requires the property being proved to be α-
compatible, that is, it must be preserved by the α-conversion relation. From our induction
principle we also directly derived an alpha-iteration principle. This principle has the property of
de�ning strong alpha compatible functions, that is, the results of applying the function to alpha
convertible terms are syntactically equal. In contrast to similar works, our iteration principle
does not have any side conditions to be veri�ed and allows us to perform computations, not just
logical proofs.

However, the aforementioned α-induction principle fails when we want to use it to prove the
Church-Rosser theorem, speci�cally in the proof of the crucial substitution lemma of the par-
allel reduction relation, which was presented as lemma 10 in chapter 3. When we try to
prove this result by an induction on terms, the application subcase involves the substitution
((λy.P)Q)[x := N]. The usual informal proof requires y to be fresh in the term N , in order
to push the substitution inside the abstraction without capturing any free occurrence of y in
N . However, our α-induction principle gives no freshness premises in the application subcase.
Because of this, a variable renaming would be required, bringing complexity to the proof, and
departing from usual pen-and-paper developments. We will later explain in detail this situation

55

56 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

in the proof of lemma 1.

In this chapter we present a strengthened α-induction principle on λ-terms that can be used to
overcome this problem. In this way we can scale the metatheory of the λ-calculus up to the
Church-Rosser theorem, formally resembling the BVC in the formalisation. Speci�cally, con-
cerning β-reduction, we prove three substitution lemmas showing that substitution is compatible
with α-conversion, parallel β-reduction, and typing in the simply typed λ-calculus à la Curry. To
the best of our knowledge, this is the �rst detailed publication of a formalisation of the Church-
Rosser and Subject Reduction theorems based upon name swapping, and using an α-induction
principle on terms.

The work that most closely resembles this one is [65], where Urban and Norrish show how to
emulate the BVC when performing induction on relations over λ-terms. They illustrate the use
of the induction principles by proving the substitution lemma for the parallel reduction relation,
and the weakening lemma of the typing relation. They present two induction principles on
relations, one for the parallel reduction relation, and another one for the typing relation. When
carrying out a proof by induction on these relations they are able to avoid some �nite set of
variable names as binders. To prove these strengthened induction principles they require that
the relation de�nition rules satisfy the following preconditions: all functions and side conditions
should be equivariant, the side conditions must imply that all bound variables do not occur
free in the conclusions, and all bound variables must be distinct. If the previous conditions
hold, they are able to derive a strengthened relation induction principle, where all binders can
be chosen distinct from some given context. Hence, they have to modify the de�nition of the
original relations to satisfy these preconditions in order to be able to prove the soundness of their
induction principles.

All the de�nitions and proofs presented in this chapter have been fully formalised in Constructive
Type Theory [37] and machine-checked employing the system Agda [46]. The corresponding code
is public, and it is available at:

https://github.com/ernius/formalmetatheory-nominal-Church-Rosser

In the subsequent text we give the proofs in English with a considerable level of detail so that
they serve for clarifying their formalisation.

In this section we will recall some de�nitions and results from the previous chapter that are
necessary for a better understanding of the material presented in this one. In section 5.3 we
introduce two new strengthened α-induction principles on λ-terms that will be useful to prove
the main results of this chapter. Then, in section 5.4 we present the notion of β-reduction and
prove the Church-Rosser theorem by using the standard method due to Tait and Martin-Löf
which involves the formulation and study of the parallel β-reduction. In section 5.5 we present
the Subject Reduction theorem of the simply typed λ-calculus.

5.2 Preliminaries

Variables belong to a denumerable set of names, and terms are inductively de�ned as usual:

M,N ::= x |MN | λx.M

https://github.com/ernius/formalmetatheory-nominal-Church-Rosser

5.2. PRELIMINARIES 57

The freshness relation states that a variable does not occur free in a term:

x 6= y

x#y

x#M x#N

x#MN

x#M

x#λy.M
x#λx.M

x 6∈b M denotes that the variable x does not occur in a binding position in the term M :

x 6∈b y
x 6∈b M x 6∈b N

x 6∈b MN

x 6= y x 6∈b M
x 6∈b λy.M

Next comes the operation of swapping of names. A �nite sequence (composition) of name swaps
constitutes a �nite name permutation which is the renaming mechanism to be used on terms.
The action of swapping is �rst de�ned on names themselves:

(x y) z =

 y if z = x
x if z = y
z if x 6= z ∧ y 6= z,

The swapping operation is directly extended to terms by swapping all names occurring in a term,
including abstraction positions. The permutation operation is just de�ned as the sequential ap-
plication of a list of swaps. We usually use π to denote permutations, and the application of a
permutation π to a term M is written πM . (x y)π denotes the permutation consisting of the
swap (x y) followed by the permutation π.

In �gure 5.1 we give a syntax-directed de�nition of α-conversion (∼α) based on the swapping
operation.

(∼αv) x ∼α x
M∼αM ′ N∼αN ′(∼αa)

MN ∼α M ′N ′

∃xs,∀z 6∈ xs, (x z)M ∼α (y z)N
(∼αλ)

λx.M ∼α λy.N

Figure 5.1: Alpha equivalence relation

In the previous chapter we proved that this is an equivalence relation, preserved by the permu-
tation operation (equivariant), and equivalent to the original de�nition.

We also derived induction and iteration principles with strengthened hypotheses for the lambda
abstraction case, namely enabling us to choose a bound name di�erent from the names in a
given list xs (TermaPrimInd). One important point in our implementation is that functions
de�ned using this iteration principle yield the same result for α-equivalent terms. We called
these functions strongly α-compatible.

The substitution operation is de�ned using this iteration principle, and as a direct consequence
of this, the following lemma is automatically derived.

Lemma 1 (α-compatibility of substitution).

M ∼α M ′ ⇒M [x:=N] = M ′[x:=N]

58 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

The following results are successfully proved using our induction principles.

Lemma 2 (Substitution preserves α-conversion).

N ∼α N ′ ⇒M [x:=N] ∼α M [x:=N ′]

Lemma 3 (Substitution under permutation).

π (M [x:=N]) ∼α (π M)[(π x):=(π N)]

The next lemma shows that substitution commutes with abstraction up to α-conversion. This is
because hypotheses ensure a fresh enough binder.

Lemma 4 (Substitution commutes with abstraction).

x 6= y ∧ x#N ⇒ (λx.M)[y:=N] ∼α λx.(M [y:=N])

Lemma 5 (Substitution composition).

x 6= y ∧ x#P ⇒ M [x:=N][y:=P] ∼α M [y:=P][x:=N [y:=P]]

The following results were not proved in the preceding chapter, so we show their proofs in detail.

Lemma 6 (Swapping substitution variable).

x#M ⇒ ((x y)M)[x:=N] ∼α M [y:=N]

Proof. We use our α-induction principle.
First, for arbitrary names x, y and term N we de�ne the following predicate over terms:

Π(M) ≡ x#M ⇒ (x y)M [x:=N] ∼α M [y:=N]

We prove Π is α-compatible, that is, if M∼αP and Π(M), then Π(P). Assume Π(M) and x#P ,
then as freshness is preserved through ∼α, we have that x#M . Then we proceed as follows:

((x y)P)[x:=N] = {∼α equivariance and lemma 1}
((x y)M)[x:=N] ∼α {Π(M) and x#M}

M [y:=N] = {lemma 1}
P [y:=N]

Next, we show the proof of the interesting abstraction case of the induction.

We have x#λz.M and we can choose z 6∈ {x, y} ∪ fv(N).

We need to prove ((x y)(λzM))[x:=N] ∼α (λzM)[y:=N]. As x#λz.M and z 6= x we get x#M ,
then we can reason as follows:

((x y)(λz.M))[x:=N] = {def. of swap}
(λ((x y)z).((x y)M))[x:=N] = {z 6∈ {x, y}}

(λz.((x y)M))[x:=N] ∼α {lemma 4}
λz.(((x y)M)[x:=N]) ∼α {i.h.}

λz.(M [y:=N]) ∼α {lemma 4}
(λz.M)[y:=N]

5.3. ALPHA INDUCTION PRINCIPLES 59

The preceding proof illustrates the usual pen-and-paper informal practice, which basically uses
the BVC to assume binders fresh enough in some de�ned context, allowing us to apply substitu-
tion in a naive way without need of renaming.

The next result is a direct consequence of the previous lemma.

Lemma 7.

x#λy.M ⇒ ((x y)M)[x:=N] ∼α M [y:=N]

5.3 Alpha Induction Principles

In this section we introduce two new α-induction principles. The �rst one is presented in �g-
ure 5.2. It is a strengthened version of the one de�ned in the preceding chapter, where the
induction hypothesis of the abstraction allows to assume the property for all permutations of the
body. This principle is useful to deal with relations which make use of the permutation operation
in their de�nitions. We will show an example of this situation in the proof of lemma 13 in next
section.

P α-compatible
(∀x) P (x)
(∀M,N) (P (M) ∧ P (N)⇒ P (MN))
(∃xs,∀M,∀x 6∈xs) ((∀π) P (π M)⇒ P (λx.M))
(∀M) P (M)

Figure 5.2: Alpha induction principle with permutations

Proof. The α-permutation induction principle shown in �gure 5.2 is proved using the one in
�gure 5.3 (which was presented in �gure 2 of the previous chapter).

(∀x) P (x)
(∀M,N) (P (M) ∧ P (N)⇒ P (MN))
(∀M,x) ((∀π) P (π M) ⇒ P (λx.M))
(∀M) P (M)

Figure 5.3: Strong permutation induction principle

The variable and application cases are direct. For the abstraction case, given any term M and
variable x, we must prove P (λx.M) knowing:

(∀π) P (π M) (5.1a)

(∃xs,∀M ′,∀y 6∈xs) ((∀π′) P (π′ M ′)⇒ P (λy.M ′)) (5.1b)

Let xs be a list of names as in (5.1b). Let us further pick y not in xs and also fresh in λx.M .
Then for all M ′, π′, P (π′ M ′) ⇒ P (λy.M ′) holds. So taking M ′ = (x y)M we have that
(∀π′)P (π′ ((x y)M))⇒ P (λy.(x y)M). Now, as π′((x y)M) = ((x y)π′)M , we can use (5.1a) to

60 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

get P (λy.(x y)M) from (5.1b), and �nally P (λx.M) because P is α-compatible and λx.M ∼α
λy.(x y)M . This last α-equivalence holds because we have chosen y fresh in λx.M .

The next induction principle (�gure 5.4) enables us to assume bound variables not in a given
�nite list of names xs through the entire induction, and not only for the abstraction case.

P α-compatible
(∀x) P (x)
(∀M,N) ((∀y ∈ xs, y 6∈b MN) ∧ P (M) ∧ P (N)⇒ P (MN))
(∀M,x) ((∀y ∈ xs, y 6∈b λx.M) ∧ P (M)⇒ P (λx.M))
(∀M) P (M)

Figure 5.4: Strengthened α-induction principle

To derive this principle we introduce the rewrite function that, given a list of names and a term,
returns an α-convertible term that does not contain any element of the given list as binder. To
prove P (M) for any termM , we proceed as follows: given a list of names xs, an alpha compatible
predicate P , and the following proofs:

(∀x) P (x)
(∀M,N) ((∀y ∈ xs, y 6∈b MN) ∧ P (M) ∧ P (N)⇒ P (MN))
(∀M,x) ((∀y ∈ xs, y 6∈b λx.M) ∧ P (M)⇒ P (λx.M))

(5.2)

we prove the following predicate Π by primitive induction on terms:

Π(M) = ((∀x∈xs) ⇒ x 6∈b M)⇒ P (M) (5.3)

Then, we use this predicate Π on the term rewrite(xs,M), which has no bound variables in xs to
obtain P (rewrite(xs,M)). Finally, as P is α-compatible and rewrite(xs,M) ∼α M we get that
P (M) holds for any M .

In turn, the proof of Π(M) by structural induction onM is straightforward because of the syntax
directed de�nition of 6∈b:

Proof.

• Variable case: Direct.

• Application case: We need to prove Π(MN) for any M,N , such that Π(M) and Π(N)
hold. That is, we have to prove P (MN), given that any variable x in xs satis�es that
x 6∈b MN . Then, by the syntax directed de�nition of 6∈b, we directly have that x 6∈b M
and x 6∈b N , and so we are able to use the induction hypothesis on M and N to get P (M)
and P (N). So, we have all the premises in the second assertion in (5.2) hold, and hence
its conclusion P (MN).

• Abstraction case: We must prove Π(λy.M), that is, we need to prove P (λy.M) knowing
that every variable x in xs satis�es that x 6∈b λy.M . By the de�nition of 6∈b, we have that
x 6= y and x 6∈b M . We can apply the last result to the inductive hypothesis Π(M) to get
P (M). Finally, we get the desired result using the third assertion in (5.2).

5.4. PARALLEL BETA REDUCTION 61

5.4 Parallel Beta Reduction

The β-reduction relation (→β) can be de�ned as the re�exive, transitive and compatible with
the syntactic constructors, closure of the β-contraction (λx.M)N .β M [x:=N]. The classical
proof of con�uence of β-reduction by Tait and Martin-Löf rests upon the property of con�uence
of the so-called parallel reduction, which can apply several β-contractions �in parallel� in one
single step. We present our de�nition in �gure 5.5.

(⇒v)
x⇒ x

M ⇒M ′ N ⇒ N ′
(⇒a)

MN ⇒M ′N ′

∃xs,∀z 6∈ xs, (x z)M ⇒ (y z)N
(⇒λ)

λx.M ⇒ λy.N

λx.M ⇒ λy.P ′ N ⇒ P ′′ P ′[y:=P ′′] ∼α P
(⇒β)

(λx.M)N ⇒ P

Figure 5.5: Parallel reduction relation

The �rst three rules have the same form as the ones de�ning the α-conversion relation presented
in �g. 5.1, which evidences that we want this parallel reduction to be a congruence over the
α-conversion, that is, if M ⇒ N , M ∼α M ′ and N ∼α N ′ then M ′ ⇒ N ′ holds. We will prove
this property in lemmas 11 and 12. Finally, note that the β-rule has an extra premise involving
α-conversion. This is because our substitution operation modi�es the bound names in terms as a
consequence of being de�ned with our alpha iteration principle. Without this premise we would
not be able to prove that ⇒ is α-compatible on its right hand side.

Note also that we have as base case x ⇒ x, instead of the usual M ⇒ M that appears in,
for instance, Barendregt's book [4]. This alternative base case rule is more convenient to prove
results about this relation by induction on terms. The next lemma shows that this change does
not modify the de�ned relation.

Lemma 8 (Re�exivity of ⇒).

Proof. Direct application of the permutation induction principle shown in �gure 5.3.

Next we prove that ⇒ is equivariant. This is a basic property in a nominal setting, establishing
that names are interchangeable.

Lemma 9 (Equivariance of ⇒).

M ⇒ N ⇒ πM ⇒ πN

Proof. By induction on the de�nition of ⇒. The variable and application cases are direct.

In the abstraction case, we have to prove λ(π x).(π M)⇒ λ(π y).(π N) with λx.M ⇒ λy.N as
hypothesis. The only rule with an abstraction as an outermost constructor in its conclusions is
(⇒λ), so we can assume that its premise holds for any z not in some list of variables xs. We

62 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

can also exclude the domain of the permutation π from the range of variable z, and reason as
follows:

(x z)M ⇒ (y z)N ⇒ {i.h.}
π((x z)M)⇒ π((y z)N) ⇒ {def. of perm.}
((π x) (π z))(πM)⇒((π y) (π z))(πN) ⇒ {as z 6∈ dom(π) then (π z) = z}
((π x) z)(π M)⇒ ((π y) z)(π N) ⇒ {(⇒ λ) rule}
λ(π x).(π M)⇒ λ(π y).(π N).

In the (⇒β) case we must prove:

(λ(π x).(π M))(π N)⇒ π P

The hypotheses are: λx.M ⇒ λy.P ′, N ⇒ P ′′ and P ∼α P ′[y:=P ′′]. By direct application of
the induction hypothesis to the �rst two premises we get:

λ(π x).(π M)⇒ λ(π y).(π P ′)

and π N ⇒ π P ′′
(5.4)

Then, using the third premise we can reason as follows:

P ∼α P ′[y:=P ′′] ⇒ {∼α equivariance}
π P ∼α π (P ′[y:=P ′′]) ⇒ {lemma 3}
π P ∼α (π P ′)[(π y):=(π P ′′)] ⇒ {∼α symmetric}
(π P ′)[(π y):=(π P ′′)] ∼α π P

We obtain the desired result using the (⇒β) rule with (5.4) and the last result as premises.

As a direct consequence of the previous lemma we derive the following result:

Corollary 1 (Preservation of ⇒ under abstraction).

M ⇒ N ⇒ λx.M ⇒ λx.N

The following lemmas state that our parallel reduction relation is preserved by α-equivalence,
both results are proved by easy inductions on the parallel reduction relation.

Lemma 10 (Right α-compatibility of ⇒).

M ⇒ N ∧N ∼α P ⇒M ⇒ P

Lemma 11 (Left α-compatibility of ⇒).

M ∼α N ∧N ⇒ P ⇒M ⇒ P

As ⇒ is re�exive, we can now prove in a direct manner that α-conversion is included in the
parallel reduction.

5.4. PARALLEL BETA REDUCTION 63

Lemma 12 (∼α ⊆ ⇒).

Proof. Given M ∼α N , as ⇒ is re�exive by lemma 8, we also know M ⇒ M . Then using
lemma 10 we obtain the desired result.

As ⇒ basically applies β-contractions, no free variable should be introduced at any relation
step, therefore freshness is preserved.

Lemma 13 (⇒ preserves freshness).

x#M ∧M ⇒ N ⇒ x#N

Proof. We use the α-induction principle with permutations (�g. 5.2) on the term M . In order
to apply this principle we must prove, for any variable x, that the following predicate is α-
compatible.

Π(M) = (∀N)(x#M ∧M ⇒ N ⇒ x#N)

As the freshness and parallel reduction relations are α-compatible, Π is also α-compatible. Now,
for the main result we proceed by induction onM , only showing the interesting abstraction case.
We have that x#λy.M and λy.M ⇒ λz.N , and we must prove x#λz.N . The parallel reduction
hypothesis, by its syntax directed de�nition, must be the result of an application of the (⇒λ)
rule, so we get its premise ∀w,w 6∈ xs, (y w)M ⇒ (z w)N . The α-induction principle allows
us to exclude some variables for the abstraction case, so we can also assume x 6= y. Using this
inequality and the hypothesis x#λy.M we get by de�nition that x#M holds. Now let u be a
variable such that u#N, u 6∈ xs and u 6= x, then x#(y u)M because x 6= y, u and x#M . We
can apply the premise of the (⇒λ) rule with u, as u 6∈ xs, and we get (y u)M ⇒ (z u)N . We
use the induction hypothesis on M and permutation (y u) with the previous two results to get
x #(z u)N . We also have that λu.(z u)N ∼α λz.N because u #N . Then as ∼α preserves
freshness, we get the desired result.

We can now prove the following inversion lemmas, which state that the original de�nition of
parallel reduction by Takahashi [62] (which we note ⇒T in the next de�nition) can be derived
from ours. These lemmas will be useful in the proof of the diamond property of ⇒.

x⇒T x
M ⇒T M

′ N ⇒T N
′

MN ⇒T M
′N ′

M ⇒T M
′

λx.M ⇒T λx.M
′

M ⇒T M
′ N ⇒T N

′

(λx.M)N ⇒T M
′[x:=N ′]

Figure 5.6: Takahashi's parallel reduction relation.

Lemma 14 (⇒ λ-inversion).

λx.M ⇒M ′ ⇒ (∃M ′′)(M ⇒M ′′ ∧ M ′ ∼α λx.M ′′ ∧ λx.M ⇒ λx.M ′′)

64 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

Proof. By de�nition of ⇒ it must be the case that λx.M ⇒M ′ is a result of an application of
(⇒ λ) rule, then we have that M ′ is in an abstraction λy.N , and there exists a list of variables
xs such that ∀z 6∈ xs, (x z)M ⇒ (y z)N . We take M ′′ = (x y)N , and prove that M ′′ satis�es
the three properties of the thesis.

• Let z be a variable such that z 6∈ xs and z#λy.M ′. By de�nition of #, x#λx.M , and then,
as parallel reduction preserves freshness, x#λy.N should also hold. So:

(x z)M ⇒ (y z)N ⇒ {⇒ equivariance}
(x z)(x z)M ⇒ (x z)(y z)N ⇒ {swap self inverse}
M ⇒ (x z)(y z)N ⇒ {(*)}
M ⇒ (x y)N

(*) In the last step of the previous deduction we applied lemma 10 with the premise that
(x z)(y z)N ∼α (x y)N . This swapping cancellation property requires z and x to be fresh
enough, as it is in this case.

• To prove λy.N ∼α λx.(x y)N , as x is fresh in λy.N , we can swap y with x in this term to
get the alpha equivalent term λx.(x y)N .

• We can apply lemma 10 with λx.M ⇒ λy.N and the α-equivalence obtained above to prove
λx.M ⇒ λx.(x y)N .

Lemma 15 (⇒ β-inversion).

If (λxM)N ⇒ P is obtained by application of the (⇒ β) rule in the following way:

λx.M ⇒ λy.M ′ N ⇒ N ′ M ′[y:=N ′] ∼α P
(⇒β)

(λx.M)N ⇒ P

then
(∃M ′′) (λx.M ⇒ λxM ′′ ∧ M ′′[x:=N ′] ∼α P)

Proof. We prove M ′′ = (y x)M ′ satis�es the thesis.

• x#λx.M and λxM ⇒ λyM ′ so by lemma 13 x#λyM ′. We can then swap y with x in
the last term and obtain the alpha equivalent term λx.(y x)M ′, using lemma 9. Then, by
lemma 10 we get λx.M ⇒ λx.(y x)M ′.

• For the second condition we reason as follows:

((y x)M ′)[x:=N ′] = {swap commutativity}
((x y)M ′))[x:=N ′] ∼α {corollary 7}
M ′[y:=N ′] ∼α {hypothesis}
P

Theorem 1 (⇒ substitution lemma).

M ⇒M ′ ∧N ⇒ N ′ ⇒M [x:=N]⇒M ′[x:=N ′]

5.4. PARALLEL BETA REDUCTION 65

The substitution lemma for parallel reduction is the crux of the Church-Rosser theorem, and
the place in which our original α-induction principles fail in capturing the BVC. If we perform
induction on the term M , the problem appears in the beta application case. In this case M =
(λy.P)Q, hence we need to prove ((λy.P)Q)[x:=N]⇒ R[x:=N ′]. But as we are in the application
case of the induction, the original α-induction principle gives no freshness information about the
binder y. The use of the BVC would allow us to choose y di�erent from x and fresh in N , and
with those freshness conditions we could push the substitution inside the abstraction without
any variable capture by the use of lemma 4.

Therefore, we next use our strengthened α-induction principle presented in �gure 5.4 to prove
this result.

Proof. Given terms N,N ′ such that N ⇒ N ′ , and a variable x, we de�ne the following predicate
over terms:

Π(M) ≡ (∀M ′)(M ⇒M ′ ⇒M [x:=N]⇒M ′[x:=N ′])

We �rst prove that Π is α-compatible, that is: Π(M) ∧ M∼αN ⇒ Π(N). This is a direct
consequence of both substitution and ⇒ being α-compatible (lemmas 1,10,11).
Then we can use our strengthened α-induction principle to prove Π by induction on the term
M , excluding the variable x, and the free variables in terms N and N ′ from the binders in M .

We show the proof of the interesting application and abstraction cases.

• Application case: we have to prove (∀P,Q) ((∀z ∈ {x}∪fv(N)∪fv(N ′), z 6∈b P Q) Π(P) ∧
Π(Q)⇒ Π(P Q)). We have two subcases according to which rule of the parallel reduction
is used to obtain the parallel reduction in the conclusion of Π(P Q).

� (⇒a) rule subcase: we have that P ⇒ P ′ and Q ⇒ Q′ and we need to prove that
(P Q)[x:=N] ⇒ (P ′Q′)[x:=N ′]. The proof is a direct application of the (⇒ a) rule
to the induction hypotheses.

� (⇒β) rule subcase: given (λy.P)Q⇒ R we must prove:

((λy.P)Q)[x:=N]⇒ R[x:=N ′]

We use the inversion lemma 15 to obtain that there exists P ′′ such that λy.P ⇒
λy.P ′′ ∧ P ′′[y:=Q′] ∼α R. Next, as we have assumed the binder y di�erent from x
and also fresh in N and N ′, we can reason as follows:

λy.P ⇒ λy.P ′′ ⇒ {i.h.}
(λy.P)[x:=N]⇒ (λy.P ′′)[x:=N ′] ⇒ {lemma 4}
λy.(P [x:=N])⇒ λy.(P ′′[x:=N ′])

By the induction hypothesis we also know Q[x:=N]⇒ Q′[x:=N ′]. So if we prove:

P ′′[x:=N ′][y:=Q′[x:=N ′]] ∼α R[x:=N ′] (5.5)

we will be able to apply the (⇒ β) rule and get that:

(λy.(P [x:=N]))(Q[x:=N])⇒ R[x:=N ′]

Then, using the freshness premises, we can pull out the substitution operation on the
left side of this parallel reduction, and using the lemma 11, of α-compatibility of ⇒,
we �nally get the desired result.

66 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

It just remains to prove (5.5) to end the proof of this subcase. Again, here the classical
informal proofs use the BVC. We can also mimic this practice in this case since our
induction principle gives us a binder y distinct form x and fresh in N ′. Then, we have
the freshness premises to successfully apply the substitution composition lemma 5 and
conclude this proof in the following steps:

P ′′[x:=N ′][y:=Q′[x:=N ′]] ∼α {lemma 5}
P ′′[y:=Q′][x:=N ′] = {lemma 1 and P ′′[y:=Q′] ∼α R }
R[x:=N ′]

• Abstraction case: we must prove (∀P, y) (∀z ∈ {x} ∪ fv(N)∪ fv(N ′), z 6∈b λy.P)∧Π(P)⇒
Π(λy.P). We apply the inversion lemma 15 to the hypothesis λy.P ⇒ Q to get that there
exists Q′ such that: P ⇒ Q′, λy.P ⇒ λy.Q′ and Q ∼α λy.Q′. Then, we can conclude the
proof in the following way:

P ⇒ Q′ ⇒ {ind. hyp.}
P [x:=N]⇒ Q′[x:=N ′] ⇒ {⇒ equivariance}
(y z)(P [x:=N])⇒ (y z)(Q′[x:=N ′]) ⇒ {(⇒λ) rule}
λy.P [x:=N]⇒ λy.Q′[x:=N ′] ⇒ {lemma 4}
(λy.P)[x:=N]⇒ (λy.Q′)[x:=N ′] ⇒ {lemma 1 and Q ∼α λy.Q′}
(λy.P)[x:=N]⇒ Q[x:=N ′]

In [65], the authors proceed by induction on the relation, so x,N,N ′ are universally quanti�ed
over the β-contraction rule de�nition, and they are forced to add the same freshness premises
that we were able to assume in this proof �by the use of our strengthened α-induction principle�
directly into the premises of their modi�ed beta rule of the parallel relation. In contrast, we are
performing induction on the term M to prove the predicate Π, and hence we are able to leave
those variables as a �xed context outside the de�nition of Π. Then by the use of our strengthened
α-induction principle we are able to mimic the BVC also in the application case of the proof,
speci�cally in the previously exposed (⇒β) rule subcase.

Finally, we can prove the diamond property of the parallel reduction. Instead of directly proving
it by induction on terms (which can easily be done), we will follow the shorter method by Taka-
hashi [62]. For this we �rst de�ne the �star� operation (�gure 5.7), such that for any λ-term M ,
M∗ is the result of contracting all the β-redexes existing in M simultaneously. Then we prove
that for any terms M,N , if M ⇒ N , then N ⇒M∗ (lemma 16). Finally, the diamond property
of ⇒ follows directly as a corollary of this result.

x∗ = x
(λx.M)∗ = λx.M∗

(x M)∗ = xM∗

((M1M2) M3)∗ = (M1M2)∗M∗3
((λx.M1) M2)∗ = M∗1 [x := M∗2]

Figure 5.7: Takahashi's star function

5.4. PARALLEL BETA REDUCTION 67

Lemma 16 (Star property).

M ⇒ N ⇒ N ⇒M∗

Proof. By induction on M . We prove the interesting application and abstraction cases.

• Abstraction case: we have to prove that N ⇒ (λx.M)∗ = λx.M∗, knowing that λx.M ⇒ N
holds. We can use the inversion lemma 14 on the latter to obtain the existence of the term
N ′ such that: N ∼α λx.N ′ and M ⇒ N ′. We can now apply the inductive hypothesis,
and then corollary 1 to M ⇒ N ′, and obtain λx.N ′ ⇒ λx.(M∗). This last result directly
gives us the desired result by lemma 11 since we know that N ∼α λx.N ′.

• Application case: we have three subcases. The �rst two are when the term is not a
redex (third and fourth lines of star operation) and are directly derived from the inductive
hypotheses.
Finally, the redex case can be subdivided accordingly to which rule, (⇒a) or (⇒β), is used
in the last step of its parallel reduction hypotheses.

� (⇒a) subcase: we have that λx.M ⇒ N and M ′ ⇒ N ′, and we need to prove that
NN ′ ⇒ ((λx.M)M ′)∗ = M∗[x := M ′∗]. We begin applying the inversion lem. 14 to
the hypothesis λx.M ⇒ N to get that there exists N ′′ such that N ∼α λx.N ′′ and
M ⇒ N ′′. We can now apply the inductive hypothesis to the latter, and then the
corollary 1 to conclude λx.N ′′ ⇒ λx.M∗. Besides, we can also apply the induction
hypothesis to the premise M ′ ⇒ N ′ to get N ′ ⇒ M ′∗. We can combine the last
two infered parallel reductions, using the (⇒β) rule, and derive that (λx.N ′′)N ′ ⇒
M∗[x := M ′∗] holds. From this result we directly get the desired result just noticing
that N N ′ ∼α (λx.N ′′)N ′, because N ∼α λx.N ′′ and N ′ ∼α N ′. Hence, by left
α-compatibility of the parallel relation (lemma 11) we �nish this subproof case.

� ⇒β subcase: we have the following hypotheses: λxM ⇒ λyN , M ′ ⇒ N ′ and
N [y := N ′] ∼α P , and we need to prove that P ⇒ M∗[x := M ′∗] holds. We pro-
ceed analogously to the previous subcase and derive that there exists N ′′ such that
λy.N ∼α λx.N ′′, N ′′ ⇒ M∗ and N ′ ⇒ M ′∗. Then we apply the substitution lemma
for ⇒ (lemma 1) to obtain N ′′[x := N ′] ⇒ M∗[x := M ′∗]. Finally, we can use left
α-compatibility lemma 11 to �nish the proof if we prove that P ∼α N ′′[x := N ′].
Next we prove that this last alpha equivalence holds:

P ∼α {hypothesis}
N [y := N ′] ∼α {by lemma 7 as x#λy.N}
((x y)N)[x := N ′] = {by lemma 1 as (x y)N ∼α N ′′}
N ′′[x := N ′]

In the previous derivation we used the freshness condition x#λy.N , which follows
from λy.N ∼α λx.N ′′, x#λx.N ′′, and that freshness is preserved under α-conversion.

As a direct consequence of the previous lemma, we have the following result:

Lemma 17 (Diamond property of ⇒).

M ⇒ N ∧M ⇒ P ⇒ ∃Q,N ⇒ Q ∧ P ⇒ Q

68 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

Proof. We use the previous lemma twice, one for each hypothesis, directly getting that the term
M∗ satis�es the thesis.

We omit the proof details of the next results because they do no deal with λ-terms. They are
proved in a direct way as in the classical literature.

De�nition 1 (Con�uence). A relation is con�uent if its re�exive and transitive closure has the
diamond property.

Lemma 18. If a relation R has the diamond property then it is con�uent

Lemma 19. If a reduction relation R is con�uent, then so is its re�exive and transitive closure
R∗.

As a direct application of the preceding two lemmas, we obtain:

Lemma 20. ⇒∗ is con�uent.

If we now consider the β-reduction →β , we have:

Lemma 21. (→β ∪ ∼α)∗ = ⇒∗

Proof. As usually done, we prove the double inclusion. To prove (→β ∪ ∼α)∗ ⊆⇒∗, it is enough
to prove (→β ∪ ∼α) ⊆ ⇒. By lemma 12 we know ∼α⊆ ⇒, and →β⊆ ⇒ can be proved by a
direct induction on the →β reduction relation.

Finally, to prove ⇒∗⊆ (→β ∪ ∼α)∗ we prove ⇒ ⊆ (→β ∪ ∼α)∗ by a direct induction on ⇒.
Then, by the monotonicity of ∗ over ⊆, we get the desired result ⇒∗⊆ ((→β ∪ ∼α)∗)∗ by the
idempotence of ∗.

Using the last two lemmas we �nally arrive at the Church-Rosser theorem.

Theorem 2 (Church-Rosser). The relation →β ∪ ∼α is con�uent.

5.5 Assignment of Simple Types

Let now τ be a syntactic category of ground types. Then the category of simple types is given
by the following grammar:

α, β ::= τ | α→ β

A context is a list of pairs of names and types representing a �nite mapping between them.
This mapping is de�ned associating to each name the �rst type occurring paired to it in the list.
Because of this, our typing contexts may contain repeated variables, and for each variable its
�rst occurrence will de�ne its type.

5.5. ASSIGNMENT OF SIMPLE TYPES 69

We will write x ∈ Γ when x is declared in the a context Γ. As usual, we denote the mapping
application Γx. In all applications of this mapping we will require x ∈ Γ in the premises. We say
a context Γ is included in another context ∆, denoted as Γ ⊆ ∆, if ∀x ∈ Γ, x ∈ ∆ ∧ Γx = ∆x.
Extending or overriding a context Γ with a new association (x, α) will be denoted Γ, x : α.

We can now de�ne the simple type assignment relation in �gure 5.8.

x ∈ Γ`v
Γ ` x : Γx

Γ `M : α→ β Γ ` N : α
`a

Γ `MN : β

Γ, x : α `M : β
`λ

Γ ` λxM : α→ β

Figure 5.8: Typing assignment

Lemma 22 (Weakening Lemma).

Γ ⊆ ∆ ∧ Γ `M : α⇒ ∆ `M : α

Proof. By a direct induction on the typing relation. As an example we show the (`λ) rule case.
We have to prove ∆ ` λx.M : α → β, which by the (` λ) rule can be derived from ∆, x : α `
M : β. We can �nally apply the inductive hypothesis to prove the latter as Γ, x : α ⊆ ∆, x : α
can be easily proved from the hypothesis Γ ⊆ ∆.

In [65] the typing context Γ cannot have repeated variables. So the abstraction introduction rule
of their typing relation requires the extra premise x#Γ. This extra premise is problematic in
the proof of the weakening lemma, since for the abstraction case to hold it is also necessary that
x#∆. Although their induction principle allows them to assume this freshness condition, the
proof becomes more complex.

Lemma 23 (Weakening with Fresh Variables).

x#M ∧ Γ `M : α⇒ Γ, x : β `M : α

Proof. By induction on the typing relation. In the abstraction case we need to prove Γ, x : β `
λy.M : γ → α, which by the (`λ) rule can proved if we have Γ, x : β, y : γ ` M : α. If x = y,
as Γ, y : γ ⊆ Γ, x : β, y : γ, we can obtain the desired result by the previous lemma and the
hypothesis Γ, y : γ ` M : α. If x 6= y, as x#λy.M , then x must be fresh in M . We have
Γ, y : γ, x : β ` M : α by induction hypothesis, hence as x 6= y we can interchange the tuples
y : γ and x : β in the typing context of this hypothesis by the previous lemma, and obtain
Γ, x : β, y : γ `M : α. Finally, applying rule (`λ) we conclude the proof.

Reasoning in a similar way we can prove the next strengthening result:

Lemma 24 (Strengthening with Fresh Variables).

x#M ∧ Γ, x : β `M : α⇒ Γ `M : α

We extend the swapping operation to contexts by swapping the names in them as expected, and
denoting the operation in the usual way. By doing so we can now formalise the equivariance
property of the typing relation.

70 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

Lemma 25 (Equivariance of the Typing Relation).

Γ `M : α⇒ (x y)Γ ` (x y)M : α

Proof. Direct induction on the typing relation.

We can now prove that the typing relation is preserved under α-conversion:

Lemma 26 (Typing relation is α-compatible).

Γ `M : α ∧M ∼α N ⇒ Γ ` N : α

Proof. The proof uses the strong permutation induction principle presented in 5.3 on the term
M . The variable and application cases are direct. In the abstraction case we have to prove
Γ ` λy.N : α→ β with Γ ` λx.M : α→ β and λx.M ∼α λy.N as hypotheses. From the second
hypothesis we have that, by the de�nition of ∼α, there exists some list of variables xs such that
∀z /∈ xs, (x z)M ∼α (y z)N . Now we can pick a variable z 6= y, fresh in N , and neither in the
domain of Γ nor in the list xs. Then we reason from the �rst hypothesis as follows:

Γ ` λx.M : α→ β ⇒ {type assignment de�nition}
Γ, x : α `M : β ⇒ {lemma 25}
(x z)(Γ, x : α) ` (x z)M : β ⇒
(x z)Γ, z : α ` (x z)M : β

As z /∈ dom(Γ) we have that (x z)Γ, z : α ⊆ Γ, z : α, then by the weakening lemma 22, we obtain
Γ, z : α ` (x z)M : β. Then, from the second hypothesis, as we chose z /∈ xs, we can derive that
(x z)M ∼α (y z)N , and continue in the following way:

Γ, z : α ` (x z)M : β ⇒ {by i.h.}
Γ, z : α ` (y z)N : β ⇒ {lemma 25}
(y z)(Γ, z : α) ` (y z)(y z)N : β ⇒ {swap application and idempotency of swapping}
(y z)Γ, y : α ` N : β ⇒ {by weakening lemma 23 as z#N}
(y z)Γ, y : α, z : α ` N : β ⇒ {by lemma 22 as (y z)Γ, y : α, z : α ⊆ Γ, y : α, z : α}
Γ, y : α, z : α ` N : β ⇒ {by strengthening lemma 24 as z#N}
Γ, y : α ` N : β ⇒ {by(` λ) rule}
Γ ` λy.N : α→ β

We can now use the original α-induction principle to prove the crucial substitution lemma for
the typing relation.

Lemma 27 (Substitution Lemma for the Typing Relation).

Γ, x : β `M : α ∧ Γ ` N : β ⇒ Γ `M [x := N] : α

Proof. We use the α-induction principle (�g. 2.2) on the term M , and avoid x and the free
variables in N as binding names in the abstraction case of the induction. The predicate to
be proved is α-compatible on M as a direct consequence of the substitution lemma 1 and the
previous result.

5.6. CONCLUSIONS 71

In the interesting abstraction case we need to prove Γ ` (λy.M)[x := N] : γ → α with hypotheses
Γ, x : β ` λy.M : γ → α and Γ ` N : β. By the syntax directed rules of the typing relation,
the term λy.M must be typed using the (`λ) rule with the premise Γ, x : β, y : γ ` M : α. We
assumed y 6= x, so using the weakening lemma 22 we can interchange the tuples x : β and y : γ
in the typing context without modifying the mapping to get that Γ, y : γ, x : β `M : α. Again,
the α-induction freshness hypothesis enables us to pick y#N so we can weaken the Γ ` N : β
hypothesis, extending the typing context with the tuple y : γ. We can now apply the induction
hypothesis with the previous results to get Γ, y : γ ` M [x := N] : α, and then by the (`λ) rule
we get Γ ` λy(M [x := N]) : γ → α. As y 6∈ {x} ∪ fv(N), we can safely pull out the substitution
operation in the latter typed term, in a naive way, getting the α-equivalent term λy.(M [x := N]).
Then, as the typing relation is α-compatible by the previous lemma, we �nally get the desired
result.

A direct corollary of the previous result is that the typing judgement is preserved by β-contraction

Corollary 2 (Typing judgement is preserved by β-contraction).

Γ `M : α,M . N ⇒ Γ ` N : α

Then, we can easily prove the following:

Corollary 3. Γ `M : α,M →β N ⇒ Γ ` N : α

Proof. As the β-reduction relation is the contextual closure of the β-contraction we do a direct
induction on the closure relation rules, where for the β-contraction case we directly use last
corollary.

Finally, the subject reduction theorem is proved by induction on the re�exive-transitive closure
of →β ∪ ∼α, using directly the last corollary and the α-compatibility of the typing relation
(lemma 26) for the →β and ∼α cases respectively.

Theorem 3 (Subject Reduction). Γ `M : α,M →∗α N ⇒ Γ ` N : α

5.6 Conclusions

The original α-induction principle on terms de�ned in the preceding chapter fails in emulating
BVC usually used in the proof of the substitution lemma for the parallel reduction relation. To
overcome this, we propose a novel strengthened α-induction principle that allows us to success-
fully deal with this problem. We use this principle to develop some metatheory of the λ-calculus,
where our formalisation goes up to the con�uence theorem for the β-reduction. Furthermore, we
formalise the simply typed λ-calculus up to the Subject Reduction theorem. Our development
successfully uses the original α-induction principle in the crucial substitution lemma for the typ-
ing relation. The latter is possible because we allow the occurrence of repeated variables in our
typing contexts.

The de�nition of the parallel reduction relation has to be done in such a way as to ensure that
the relation is α-compatible. Because of this, it looks more concrete than the classical one, as
presented by Barendregt [4] or Takahasi [62]. However, we are able to prove inversion lemmas

72 CHAPTER 5. CHURCH-ROSSER AND SUBJECT REDUCTION

that allow us to recover the original parallel reduction de�nition, and from them we are able to
reproduce Takahashi's proof of the diamond property.

In a similar work, Urban and Norrish [65] also have to modify the parallel reduction relation in
order to derive an ad-hoc induction principle on the parallel reduction to successfully prove the
substitution lemma for this relation. We believe our approach is more direct and general, since
we derive an induction principle on simple terms, and not on the more complex relations over
them. As shown in the beta subcase of the proof of the substitution theorem, we are able to
derive the freshness conditions for the binders directly from our α-induction principle, as in the
BVC, and not explicitly imposing them in the de�nition of the parallel reduction relation.

CHAPTER 6

Generic Binding Framework

In this chapter we generalise the techniques developed in the preceding two chapters, applying
generic programming methods to address the formalisation of generic structures with binders. We
de�ne a universe of regular datatypes with variable binding information, and on these we de�ne
generic formation, elimination, and induction operators. We also introduce an α-equivalence
relation based on the swapping operation, and we derive α-iteration/induction principles that
capture the BVC.

6.1 Introduction

The de�nition of generic functions by recursion on the description of datatypes is the basic idea
of generic programming. This method works by de�ning a datatype, introduced as the universe
in for instance [37], which contains datatype descriptions, such as �a list is either empty or a pair
consisting of a parameter and a sublist� or �a tree is either a leaf with a parameter or a pair with
two subtrees�. Indeed, the universe constructors correspond to these commons: �either�, �pair�,
�parameter� and �substructure� abstracted out of the previous informal descriptions. Then, a
decoding function is introduced, which interprets instances of the universe, usually called universe
codes, into actual datatype instances.

In a dependently typed setting we can de�ne generic functions over the universe of codes and
the associated decoded datatypes. In other words, the codes give us enough information to
properly traverse the structure of their corresponding datatypes. The following is an outline of
such technique, showing the generic signature of an equality test over some universe instance
code.

equal : (code : Universe) → decode code → decode code → Bool

This would be a simple example of a generic function embedded in several programming lan-
guages. In Haskell, for instance, the deriving Eq primitive instructs the compiler to automat-
ically derive the syntactical equality for any datatype de�nition. More interesting examples
include generic iterations and recursion principles directly derived from inductive types. Indeed,
the traversal of a recursive structure is a classical operation that can be described for any re-
cursive structure. Therefore, generic programming avoids code duplication by allowing us to

73

74 CHAPTER 6. GENERIC BINDING FRAMEWORK

abstract out common operations in datatypes. One can wonder how many other practical be-
haviors can be generalised from such general structures. In this chapter we enrich a universe
of datatypes with variables and scoping information, introducing nominal techniques over any
abstract syntax with binders.

The particular universe election has a direct impact on the datatypes and on the set of supported
generic functions it can express. In this chapter we present a universe of Regular Trees [43],
extended with variables and binding information. We de�ne generic formation, elimination,
and induction operators over this universe. Moreover, our universe extension also allows us to
introduce an α-equivalence relation based on the swapping operation. Then, as done in the
previous chapters for the λ-calculus, we derive an α-iteration/induction principle that captures
the BVC. We develop the λ-calculus and System F as examples of languages de�ned in our
universe, and show how to derive the naive substitution operation, and also the capture-avoiding
substitution, plus several other results proved at a generic level, that is, results we will be able
to reuse in the λ-calculus and System F instances. We also prove speci�c lemmas using the
α-induction principle for our universe construction, showing in this way practical usages of the
proposed framework. These examples show the �exibility of our approach, as we are able to
prove particular language results as it is usually done using pen-and-paper. Some notation from
the codes of our universe permeates our proofs, but this only involves notation overhead, and
does not modify the basic structure of the proofs and their underlying general ideas.

6.2 Related work

The implementation of meta-programs, that is, programs that manipulate syntax, requires op-
erations that are not speci�c to a single language, but are common to several ones. As meta-
programs are usual pieces of software, there exist several examples of works supporting general
syntax based manipulations. These developments are based on di�erent representations.

The �rst use of generic programming in a dependently typed setting is presented by Pfeifer and
Ruess in [49], and it uses the LEGO programming language. The universe presented describes
datatypes that are sums of products, which corresponds to an �either of certain tuples� informal
description. In [6, 19] Dybjer and Bove present several universes with more expressive power,
enabling the description of families of datatypes and introducing parameters on their descriptions.
In [43] Morris presents a universe construction allowing mutual inductive datatypes.

Programming languages supporting native constructions to declare and manipulate abstract
syntax with binders are presented by Shinwell, et. al in [59,60], where an ML extension FreshML,
and an O'Caml extension Fresh O'Caml are correspondly developed. These languages allow to
deconstruct datatypes with binders in a safe way, that is, in the case of an abstraction inspection,
a variable swapping operation with a freshly generated binder is computed in the abstraction
body. In this way, the language user has access only to a fresh binder, and the correspondly
renamed body of the opened abstraction. This mechanism grants that values with binders are
operationally equivalent if they represent α-equivalent objects. This result is proved in [60] by
introducing a denotational semantics of the object language FreshML into FM-sets (Fraenkel
and Mostowski sets). They prove that this denotational semantics matches the operational one.
In this way, they are able to prove that values of the introduced abstract syntax with binders
properly represent α-equivalence classes of the object-level syntax. In [8] Cheney carries out a
similar work, but instead of developing a language extension, he implements a Haskell library

6.2. RELATED WORK 75

called FreshLib. As he does not implement a language from scratch, this work introduces generic
programming techniques in its implementation in order to support the required level of genericity.

All previous works address common operations dealing with general structures with binders.
Although some of these developments give proofs about the soundness of their approaches, their
main concern is the implementation of meta-programs. In [34], Lee et al. use generic program-
ming techniques to develop mechanisations of formal meta-theory in the Coq proof assistant.
This work allows the user to choose between nominal, locally nameless or de Bruijn �rst-order
syntax. For each of these representations, they o�er several infrastructure operations and their
associated lemmas. For instance, for the locally nameless setting, two di�erent substitutions are
needed for bound and free variables correspondingly. In the case of System F, where terms and
type variables have binding constructions, this representation involves six di�erent substitution
operations. Hence, as the number of syntactic sorts supporting binding constructions increases
in the object language, there is a combinatorial explosion of the number of operations and lem-
mas involved in its formalisation. They manage to address these issues de�ning these operations
and associated lemmas in a generic re-usable way. Moreover, they provide a small annotation
language to describe the binding structure of the object language, from which they can auto-
matically derive an isomorphism between the object language and their generic universe syntax.
However, introducing inductive relations in this framework requires the user to provide a map-
ping between the concrete relation, de�ned at the object language level, and the generic relation.
They claim to be able to successfully instantiate some cases of the POPLmark challenge [3] in
their framework, validating their approach both for the locally nameless and the de Bruijn �rst-
order syntax, and comparing some metrics of their approach against other solutions. However,
their particular choice of universe makes it impossible to have more than one sort of binder per
datatype, so they cannot represent in their setting a language such as Session Types [69], where
there exist three distinct sort of binders: parameters, channels and ports within a concurrent
calculus, as we will see in detail in next section. We believe their work addresses reusing and
usability in great manner, but lacks in extensibility and abstraction. By using this framework
the user can reuse several operations and lemmas that hide some of the work required by the
underlying chosen binders representation. However, in order to introduce new operations and
prove results, the user may have to deal with the underlying generic abstract syntax language.
Their work seems to support the nominal syntax, although no α-conversion relation, neither any
other relation over terms is presented. Indeed, they do not further develop the nominal syntax,
beyond the basic de�nitions of a nominal abstract syntax.

In [36], Licarta and Harper codify a universe that mixes binding and computation constructions
in Agda, where computations are represented as meta-level functions injected in the universe
constructions, i.e., they embed a HOL syntax in their development. Their representation is based
on a well-scoped de Bruijn representation, that is, de Bruijn terms associated with a context
indexing the free variables. For this universe, they provide a generic substitution operation, and
prove context weakening and strengthening lemmas.

Our work uses generic programming techniques to develop the meta-theory of abstract syntax
with binders in a generic way, as in the previously described works. But we chose to maintain
names for binders like as usually done in informal practice.

76 CHAPTER 6. GENERIC BINDING FRAMEWORK

6.3 Regular Tree Universe with Binders

As in Lee et al. [34], we choose a simpli�cation of the universe of regular tree datatypes presented
by Morris in [43]. In Morris' original work, the universe of regular trees can represent recursive
types using µ-types (from [51]). However, instead of the nominal approach traditionally used
with recursive type binders, this universe uses a well-scoped de Brujin representation. Therefore,
in order to properly interpret the full universe, a de�nition indexed by a context with the multiple
µ-recursive positions de�nitions is required. Our representation in Agda (�gure 6.1), simpli�es
this burden at the expense of not being able to represent mutually recursive datatypes. In other
words, our universe construction admits only a single top-level µ-recursive type binder. However,
it is rich enough in structure to address languages without mutually recursive datatypes, such
as λ-calculus, System F and Session Types processes.

In this chapter we will show the Agda code of our development. The code is available at:

https://github.com/ernius/genericBindingFramework

data Functor : Set1 where
|1| : Functor
|R| : Functor
|E| : Set → Functor
|Ef| : Functor → Functor
|+| : Functor → Functor → Functor
|x| : Functor → Functor → Functor
|v| : Sort → Functor
|B| : Sort → Functor → Functor

Figure 6.1: Regular tree universe with binders.

The �rst three base constructors in �gure 6.1 represent the embedding of: the unity type, a
recursive position, and an arbitrary datatype. The fourth constructor embeds a datatype rep-
resentable in our universe, while the next two constructors represent correspondly the sum and
product types. Finally, the last two introduction rules are speci�c to our desired domain of ab-
stract syntaxes with binders. As our universe supports di�erent sorts of variables, the variables
and binders constructors receive as parameters the sort of variables that they introduce or bind.
The binder constructor also receives the descriptor of the bound subterm.

For example, the type representations of natural numbers and lists of natural numbers can be
de�ned in our universe as follows:

FNat = |1| |+| |R|
FListNat = |1| |+| (|Ef| FNat) |×| |R|

Next, we extract from [51] the more familiar de�nitions of the natural numbers and lists of
natural numbers. The analogies between both de�nitions can be easily recognised.

Nat = µR.(1 +R)
ListNat = µR.(1 + Nat×R)

https://github.com/ernius/genericBindingFramework

6.3. REGULAR TREE UNIVERSE WITH BINDERS 77

In �gure 6.2 we introduce the missing µ-operator in our de�nition. For this, we mutually de�ne
the decoding or interpretation function J_K, and the �xed point µ-operator for our universe.

mutual
J_K : Functor → Set → Set
J |1| K _ = >
J |E| B K _ = B
J |Ef| F K _ = m F
J |R| K A = A
J F |+| G K A = J F K A] J G K A
J F |x| G K A = J F K A × J G K A
J |v| S K _ = V
J |B| S G K A = V × J G K A

data m (F : Functor) : Set where
〈_〉 : J F K (m F) → m F

Figure 6.2: Regular tree universe interpretation.

The unit case |1| just returns the unit type in Agda. The next two cases correspond to em-
beddings, and they respectively return the injected set and the �xed point of the embedded
universe descriptor. In the recursive case |R|, we impose the �xed point semantics by returning
the Set interpretation argument. For the sum and product cases we return Agda's disjoint sum
and product datatype constructions respectively applied to the recursive calls. Finally, in the
last two rules we can observe how the variable and binder constructions inject the �xed set of
variables V in the interpreted datatype. We assume a denumerable set V of variables with a
decidable equality. Note that in this last two cases the sort argument S has no impact on the
interpreted set. Indeed, we have only one kind of variables V . This sort identi�er will be relevant
in next sections to implement generic operations related to binding issues.

In fact our universe construction describes a function from Set to Set. Indeed, the encoded set
must be interpreted as the �xed point of the decoding function J_K. This function can be viewed
as a functor in category theory, and as we will see in the next section, it consequently supports
the classical map and fold operations.

Next, we properly de�ne the natural numbers and the list of natural numbers as the �xed point
of the previously introduced functors, resembling Pierce's constructions. Note that no name is
needed in the outer µ-constructor as our universe admits only one top-level µ-recursive type
binder.

Nat = µ FNat
ListNat = µ FListNat

In the following example, we illustrate the use of our universe, and in particular of the variables
and binders constructions, by encoding the λ-calculus in it (�gure 6.3). We show the corre-
sponding classical concrete syntax de�nition using comments, that are written following a "-"
to the right of each line. This de�nition has only one sort of variables identi�ed with the sort
SortlTermVars.

We next introduce in�x constructors, resembling the concrete syntax of the λ-calculus, and hiding
away our universe code constructions.

78 CHAPTER 6. GENERIC BINDING FRAMEWORK

lF : Functor � M,N :-

lF = |v| SortlTermVars � x

|+| |R| |x| |R| � | M N

|+| |B| SortlTermVars |R| � | l x M

lTerm : Set
lTerm = m lF

Figure 6.3: λ-calculus.

v : V → lTerm
v = 〈_〉 ◦ inj1

· : lTerm → lTerm → lTerm
M · N = 〈 inj2 (inj1 (M , N)) 〉

ň : V → lTerm → lTerm
ň n M = 〈 inj2 (inj2 (n , M)) 〉

In �gure 6.3 we present the codi�cation of the System F. As this language also needs bindings
at the type level, this encoding illustrates the use of two distinct sorts of binders: SortFTypeVars
and SortlTermVars.

tyF : Functor � t,r :-

tyF = |v| SortFTypeVars � a

|+| |R| |x| |R| � | t → r

|+| |B| SortFTypeVars |R| � | ∀ a . t

�

tF : Functor � M,N :-

tF = |v| SortFTermVars � x

|+| |R| |x| |R| � | M N

|+| |Ef| tyF |x| |B| SortFTermVars |R| � | l x : t . M

|+| |R| |x| |Ef| tyF � | M t

|+| |B| SortFTypeVars |R| � | L a . M

FType : Set
FType = m tyF

FTerm : Set
FTerm = m tF

Figure 6.4: System F.

Our universe construction departs from the one presented by Lee et al. in several aspects.
Firstly, in their work the variable construction is de�ned at the top-level, that is, in the µ
datatype. Hence, in their universe, for any described datatype, its elements are either a variable
or an element following the structure given by some functor. By doing so they are able to de�ne

6.3. REGULAR TREE UNIVERSE WITH BINDERS 79

the substitution operation in a generic way. However, this election makes their work depart
from the category theory approach. In contrast, we maintain our framework compatible to a
categorical setting, showing latter how easily we can recover the substitution as an instance of
the more general fold operation. Secondly, our constructions for binders and variables have a
sort argument to distinguish between distinct sorts of variables. Lee et al. can only have one sort
of binder for each datatype. This makes it impossible to model more than one sort of binders
for the same datatype, as it is the case of Session Types processes [69]. In �gure 6.5 we show the
syntax of the datatype of processes in this language, which has three kinds of bindable names:
parameters x , channels k and ports a.

P :− request a(k) in P (binds channel k in P)
| accept a(k) in P (binds channel k in P)
| k!(x) in P (binds parameter x in P)
| (νk)P (binds channel k in P)
| (νa)P (binds port a in P)
| . . .

Figure 6.5: Session Types processes.

However, we cannot model the syntax of the types of Session Types, shown in �gure 6.6, as it
involves a mutual recursive datatype.

T :− S
| Nat
| . . .
| . . .

S :− end
| ?T.S
| !T.S
| . . .

Figure 6.6: Session Types.

6.3.1 Map and Fold

In �gures 6.7 and 6.8 we present the classical map and fold operations as they are usually
introduced in category theory. Our de�nition only adds two extra rules for the variables and
binders constructions.

mapF : {A B : Set}(F : Functor) → (A → B) → J F K A → J F K B
mapF (|v| S) f x = x
mapF |1| f tt = tt
mapF (|E| A) f e = e
mapF (|Ef| F) f e = e
mapF |R| f e = f e
mapF (G1 |+| G2) f (inj1 e) = inj1 (mapF G1 f e)
mapF (G1 |+| G2) f (inj2 e) = inj2 (mapF G2 f e)
mapF (G1 |x| G2) f (e1 , e2) = mapF G1 f e1 , mapF G2 f e2
mapF (|B| S G) f (x , e) = x , mapF G f e

Figure 6.7: Classical map operation.

80 CHAPTER 6. GENERIC BINDING FRAMEWORK

{-# TERMINATING #-}
foldT : {A : Set}(F : Functor) → (J F K A → A) → m F → A
foldT F f 〈 e 〉 = f (mapF F (foldT F f) e)

Figure 6.8: Classical fold operation.

Unfortunately this de�nition of fold does not pass Agda's termination checker. The recursive call
to foldT is passed to the higher order function mapF, and because of this reason the termination
checker cannot see how mapF is using it.

To make the fold operation pass the termination checker we have to fuse map and fold into a
single function, as done in [47] for a similar regular tree universe. In �gure 6.9 we show our imple-
mentation of the function foldmap. It needs to keep two functors, since the fold (recursive) part
works always over the same functor argument F , while, for the map part, the auxiliary functor
argument G gives the position during the traversal of the structure of functor F . Therefore, this
function only uses the functor F in the recursive case rule (the |R| case) in which the right hand
side expression basically begins a new traversal of the functor F , in a way similar to the original
de�nition of fold. It does so by providing with a fresh copy of F in the position of the auxiliary
argument G. The rest of the rules are equivalent to a map over the functor G. Note that this
de�nition terminates because the argument of type J G K (m F) decreases with each call.

Finally, the new fold operation is de�ned as a recursive instance of foldmap, as shown in �g-
ure 6.10.

foldmap : {A : Set}(F G : Functor) → (J F K A → A)
→ J G K (m F) → J G K A

foldmap F (|v| S) f x = x
foldmap F |1| f tt = tt
foldmap F (|E| A) f e = e
foldmap F (|Ef| G) f e = e
foldmap F |R| f 〈 e 〉 = f (foldmap F F f e)
foldmap F (G1 |+| G2) f (inj1 e) = inj1 (foldmap F G1 f e)
foldmap F (G1 |+| G2) f (inj2 e) = inj2 (foldmap F G2 f e)
foldmap F (G1 |x| G2) f (e1 , e2) = foldmap F G1 f e1 ,

foldmap F G2 f e2
foldmap F (|B| S G) f (x , e) = x ,

foldmap F G f e

Figure 6.9: Terminating fold-map fusion operation.

fold : {A : Set}(F : Functor) → (J F K A → A) → m F → A
fold F f e = foldmap F |R| f e

Figure 6.10: Terminating fold operation.

In �gure 6.11 we continue with the λ-calculus example introduced in the previous section. As
an example, we de�ne a function vars that counts the number of variable occurrences in a term.
We do so by instantiating it as a case of the fold operation. This function could also be de�ned
equivalently by an explicit recursion on λ-terms.

6.3. REGULAR TREE UNIVERSE WITH BINDERS 81

varsaux : J lF K N → N
varsaux (inj1 _) = 1
varsaux (inj2 (inj1 (m , n))) = m + n
varsaux (inj2 (inj2 (_ , m))) = m

vars : m lF → N
vars = fold lF varsaux

Figure 6.11: Fold application example.

6.3.2 Primitive Induction

In this section we develop an elimination rule that is more generic than the fold operation de�ned
above. This elimination rule captures proof by induction, and is based on the recursion rule given
by Benke et al. in [5]. However, our development departs from their work in the following points:
Firstly, they derive an elimination rule for a simpler universe construction, based on one-sorted
term algebras, and de�ned through the more simpler signatures, instead of over functors as we
do. For instance, their universe does not allow the injection of previously de�ned datatypes.
This is the case for the list of natural numbers datatype, where natural numbers are injected
into lists constructions. Secondly, their induction principle does not pass the termination checker
due to reasons similar to the ones we discussed for the �rst version of the fold operation.

To de�ne the foldInd function, �rst we introduce the auxiliary function �h (�gure 6.12). This
function receives a predicate P over the �xpoint of a functor F and an auxiliary functor G (with
a similar role as the one for the previous foldmap function), and constructs a corresponding
predicate of type J G K (m F) → Set. This predicate represents the predicate P holding for every
recursive position m F in an element of type J G K (m F).

�h : {F : Functor}(G : Functor)(P : m F → Set)
→ J G K (m F) → Set

�h (|v| S) P x = >
�h |1| P tt = >
�h (|E| B) P e = >
�h (|Ef| G) P e = >
�h |R| P e = P e
�h (G1 |+| G2) P (inj1 e) = �h G1 P e
�h (G1 |+| G2) P (inj2 e) = �h G2 P e
�h (G1 |x| G2) P (e1 , e2) = �h G1 P e1 × �h G2 P e2
�h (|B| S G) P (x , e) = �h G P e

Figure 6.12: �h function.

We can now present our induction principle. We will do it in a similar way as we did above
for the fold function. First, we introduce the fold-map fusion function foldmapFh (�gure 6.13).
Then, we use this function to directly derive the induction principle as a recursive instance of
the fold-map fusion (�gure 6.14).

We next give an example of the use of this induction principle. We prove that the application
of the function vars to any lambda term is grater than zero. We introduce the predicate Pvars
(�gure 6.15) representing the property to be proved, and then we introduce an auxiliary lemma

82 CHAPTER 6. GENERIC BINDING FRAMEWORK

foldmapFh : {F : Functor}(G : Functor)(P : m F → Set)
→ ((e : J F K (m F)) → �h F P e → P 〈 e 〉)
→ (x : J G K (m F)) → �h G P x

foldmapFh (|v| S) P hi n = tt
foldmapFh |1| P hi tt = tt
foldmapFh (|E| B) P hi b = tt
foldmapFh (|Ef| F) P hi b = tt
foldmapFh {F} |R| P hi 〈 e 〉 = hi e (foldmapFh {F} F P hi e)
foldmapFh (G1 |+| G2) P hi (inj1 e) = foldmapFh G1 P hi e
foldmapFh (G1 |+| G2) P hi (inj2 e) = foldmapFh G2 P hi e
foldmapFh (G1 |x| G2) P hi (e1 , e2) = foldmapFh G1 P hi e1 ,

foldmapFh G2 P hi e2
foldmapFh (|B| S G) P hi (x , e) = foldmapFh G P hi e

Figure 6.13: Fold-map fusion.

foldInd : (F : Functor)(P : m F → Set)
→ ((e : J F K (m F)) → �h F P e → P 〈 e 〉)
→ (e : m F) → P e

foldInd F P hi e = foldmapFh {F} |R| P hi e

Figure 6.14: Induction principle.

plus>0, stating that the sum of two positive numbers is also positive.

PVars : m lF → Set
PVars M = vars M > 0

plus>0 : {m n : N} → m > 0 → n > 0 → m + n > 0
plus>0 {m} {n} m>0 n>0 = ≤-steps m n>0

Figure 6.15: Pvars and plus>0.

The proof that Pvars holds for every term M is a direct application of the induction principle as
shown in �gure 6.16. The variable case is direct, while the application case is the application of
the lemma plus>0 to the inductive hypotheses. Finally, the abstraction case is a direct application
of the inductive hypothesis.

provePVars : (M : m lF) → PVars M
provePVars = foldInd lF PVars proof

where
proof : (e : J lF K (m lF)) → �h lF PVars e → PVars 〈 e 〉
proof (inj1 x) tt = s≤s z≤n
proof (inj2 (inj1 (M , N))) (PM , PN) = plus>0 PM PN
proof (inj2 (inj2 (_ , M))) PM = PM

Figure 6.16: Proof of Pvars.

As in the de�nition of vars above (�gure 6.11), this proof could also have been done by a direct
induction on terms. However, these elimination principles will be the base upon which we will

6.3. REGULAR TREE UNIVERSE WITH BINDERS 83

develop more interesting proofs in further sections.

6.3.3 Fold with Context Information

In this section we present a particular useful instantiation of the previously introduced fold
operator. This instantiation aims at reproducing nominal techniques in our work.

We present its de�nition in �gure 6.17. We introduce an extra argument with type m C, which
is used by the folded function f . This function is partially applied to this context argument,
and then passed to the previously de�ned fold function. Hence, this argument acts as an explicit
invariant context for the function f through the entire fold operation. Another di�erence with
the original fold operation is that the result of this instance is a datatype m H encoded in our
universe instead of an arbitrary Set.

foldCtx : {C H : Functor}(F : Functor)
→ (m C → J F K (m H) → m H)
→ m C → m F → m H

foldCtx F f c = fold F (f c)

Figure 6.17: Fold with Context.

From this function we can directly derive the naive substitution operation. In order to do this,
we �rst give the functor descriptor cF for the context argument. It represents the pair containing
the substituted term and the variable for which it is substituted.

cF = |v| SortlTermVars |x| |Ef| lF

Then, we de�ne the auxiliary function substaux (�gure 6.18) which, given a term structure with
the results of the recursive calls in its recursive positions, constructs the result of the substitution.
The application and abstraction cases directly reconstruct the corresponding terms from the
recursive call results. Note that we hide the universe codes in the right side of this de�nition by
using the previously introduced constructors of the λ-calculus.

substaux : m cF → J lF K (m lF) → m lF
substaux _ (inj2 (inj1 (t1 , t2))) = t1 · t2
substaux _ (inj2 (inj2 (y , t))) = ň y t

substaux 〈 x , N 〉 (inj1 y) with x
?
=v y

... | yes _ = N

... | no _ = v y

Figure 6.18: Naive substitution auxiliary function.

For the variable case, we compare the variables and apply the substitution if they are equal,
otherwise we return the variable unchanged, as usually done. The application case is immediate.
In the abstraction case we do not check whether the abstracted variable is di�erent from the
substituted one, as in Barendregt's substitution de�nition. In fact, this comparison would be
pointless because, as we are using an iteration principle, we do not have the original abstraction
body subterm.

84 CHAPTER 6. GENERIC BINDING FRAMEWORK

Finally, we instantiate the foldCtx function with substaux, and its appropriate context pair to get
the naive substitution operation. This de�nition is equivalent to the one presented by Barendregt
in [4].

[:=_]n : lTerm → V → lTerm → lTerm
M [x := N]n = foldCtx lF substaux (〈 x , N 〉) M

Figure 6.19: Naive substitution.

6.4 Name Swapping

In this section we develop nominal techniques over the introduced universe. We begin with the
basic swapping operation. This operation completely traverses a functorial structure, swapping
occurrences of variables (either free, bound or binding) of some given sort of variables.

Its implementation is similar to the implementation of the function fold. We use an auxiliary
function swapF, presented in �gure 6.20, that takes a function F and an extra functor argument
G, and traverses its structure until recursive or embedded positions are reached, from where
we restart this auxiliary argument with either the original recursive functor F or the embedded
functor correspondingly. Note that this last case di�ers from the de�nition of fold, where this
case is a base case. However, in this de�nition we must also traverse the embedded functor
instance, as we are swapping all the variables in the structure, including the variables present
in any embedded structure. Because of this, we can not derive the swaping operation as an
instance of fold. In the variable and abstractions cases we use the swapping operation over
variables, introduced in chapter 4.

swapF : {F : Functor}(G : Functor)
→ Sort → V → V → J G K (m F) → J G K (m F)

swapF (|v| S') S a b c with S'
?
=S S

... | yes _ = (a • b)a c

... | no _ = c
swapF |1| S a b tt = tt
swapF (|E| _) S a b e = e
swapF (|Ef| G) S a b 〈 e 〉 = 〈 swapF G S a b e 〉
swapF {F} |R| S a b 〈 e 〉 = 〈 swapF F S a b e 〉
swapF (G1 |+| G2) S a b (inj1 e) = inj1 (swapF G1 S a b e)
swapF (G1 |+| G2) S a b (inj2 e) = inj2 (swapF G2 S a b e)
swapF (G1 |x| G2) S a b (e1 , e2) = swapF G1 S a b e1 ,

swapF G2 S a b e2

swapF (|B| S' G) S a b (c , e) with S'
?
=S S

... | yes _ = (a • b)a c ,
swapF G S a b e

... | no _ = c ,
swapF G S a b e

Figure 6.20: Auxiliary function swapF.

6.4. NAME SWAPPING 85

Finally, in �gure 6.21 we present the swapping operation as a recursive case instance of the swapF
function.

swap : {F : Functor} → Sort → V → V → m F → m F
swap S a b e = swapF |R| S a b e

Figure 6.21: Swapping operation.

Once the swapping operation is de�ned, we are able to generically prove the lemma in �gure 6.22.
This lemma states that the fold operation is well-behaved with respect to swapping, given that
the correspondly folded operation is also well-behaved. The proof is a direct induction on terms.

lemmaSwapFoldEquiv : {F H : Functor}{S : Sort}
{x y : V}{e : m F}{f : J F K (m H) → m H}

→ ({x y : V} {e : J F K (m H)}
→ f (swapF F S x y e) ≡ swap {H} S x y (f e))

→ fold F f (swap S x y e) ≡ swap S x y (fold F f e)

Figure 6.22: Fold is well-behaved with respect to swapping.

We also introduce a similar lemma in �gure 6.23 for the fold instance with context information
presented in the previous section. Its proof (�g. 6.24) follows by a direct equational derivation
using the previous lemma, and the proof that f is well-behaved with respect to swapping.

lemmaSwapFoldCtxEquiv : {C H F : Functor}{S : Sort}{x y : V}
{e : m F}{f : m C → J F K (m H) → m H}{c : m C}

→ ({c : m C}{S : Sort}{x y : V}{e : J F K (m H)}
→ f (swap S x y c) (swapF F S x y e) ≡ swap S x y (f c e))

→ foldCtx F f (swap {C} S x y c) (swap {F} S x y e)
≡
swap {H} S x y (foldCtx F f c e)

Figure 6.23: Fold with context is well-behaved with respect to swapping.

lemmaSwapFoldCtxEquiv {C} {H} {F} {S} {x} {y} {〈 e 〉} {f} {c} prf =
begin≡

foldCtx F f (swap {C} S x y c) (swap {F} S x y 〈 e 〉)
≡〈 re� 〉

f (swap {C} S x y c)
(foldmap F F (f (swapF |R| S x y c)) (swapF F S x y e))

≡〈 cong (f (swap {C} S x y c))
(lemmaSwapFoldEquivCtxF {F} {F} {H} {S} {x} {y} {e}

{l x y → f (swap {C} S x y c)} {f c} prf) 〉
f (swap {C} S x y c) (swapF F S x y (foldmap F F (f c) e))

≡〈 prf 〉
swap {H} S x y (foldCtx F f c 〈 e 〉)

�

Figure 6.24: Proof of lemmaSwapFoldCtxEquiv.

86 CHAPTER 6. GENERIC BINDING FRAMEWORK

With these examples we show how to develop generic functions in our universe with binders, and
how to prove generic lemmas about their interaction with the previously introduced iteration
principles.

We now illustrate the application of this lemma to the λ-calculus terms de�ned in �gure 6.3,
directly deriving the lemma in �gure 6.25. This lemma states that swapping commutes with
substitution, which is a result that was particularly useful in the developments presented in the
preceding chapters. In the proof we can see the use of lemma-substauxSwap which states that
the auxiliary function substaux (�g. 6.19) used to de�ne the substitution is well-behaved with
respect to swapping.

lemma-[]Swap : {x y z : V}{M N : lTerm}
→ ((y • z) M) [(y • z)a x := (y • z) N]n
≡
(y • z) (M [x := N]n)

lemma-[]Swap {x} {y} {z} {M} {〈 N 〉}
= lemmaSwapFoldCtxEquiv {cF} {lF} {lF} {SortlTermVars}

{y} {z} {M} {substaux} {〈 x , 〈 N 〉 〉}
(l {c} {S} {x} {y} {e} →

lemma-substauxSwap {c} {S} {x} {y} {e})

Figure 6.25: Substitution is well-behaved with respect to swapping.

The previous example shows how feasible is to instantiate generic proofs, and to derive useful
lemmas in particular instances of our generic universe.

6.5 Alpha Equivalence Relation.

In �gure 6.26 we introduce the generic de�nition of the α-equivalence relation over our universe,
named ∼a.

Its de�nition follows a process similar to the one used before to implement generic functions over
our universe. First, we de�ne an auxiliary relation ∼aF, which is inductively de�ned introducing
an auxiliary functor G, used to traverse the functor F structure. For the interesting binder case,
we follow an idea similar to the one used in chapter 4, that is, we de�ne that two abstractions
are α-equivalent if there exists some list of variables xs, such that for any given variable z not
in xs, the result of swapping the corresponding binders with z in the abstraction bodies is α-
equivalent. Note that the swapping is performed only over the sort of variables bound by this
binder position, leaving any other sort of variables unchanged.

We are able to prove that this is an equivalence relation, and also that it is preserved under
swapping in a similar way as previously done in chapter 4.

As we did before with the swapping operation, we now proceed to study how the iteration
principles behave under the introduced α-conversion relation. We begin by proving that the
fold operation is α-compatible if applied to α-compatible functions. In �gure 6.27 we prove this
lemma for the fold-map fusion with a direct induction on terms. In the functor embedding case
(|Ef| G) we use the re�exive property of α-conversion. The only interesting case is the last binder
case, which is direct by using that α-conversion is preserved by swapping.

6.5. ALPHA EQUIVALENCE RELATION. 87

data ∼aF {F : Functor} : (G : Functor)
→ J G K (m F) → J G K (m F) → Set where
∼aV : {x : V}{S : Sort} → ∼aF (|v| S) x x
∼a1 : ∼aF |1| tt tt
∼aE : {B : Set}{b : B} → ∼aF (|E| B) b b
∼aEf : {G : Functor}{e e' : J G K (m G)}

→ ∼aF G e e' → ∼aF (|Ef| G) 〈 e 〉 〈 e' 〉
∼aR : {e e' : J F K (m F)}

→ ∼aF F e e' → ∼aF |R| 〈 e 〉 〈 e' 〉
∼a+1 : {F1 F2 : Functor}{e e' : J F1 K (m F)}

→ ∼aF F1 e e' → ∼aF (F1 |+| F2) (inj1 e) (inj1 e')
∼a+2 : {F1 F2 : Functor}{e e' : J F2 K (m F)}

→ ∼aF F2 e e' → ∼aF (F1 |+| F2) (inj2 e) (inj2 e')
∼ax : {F1 F2 : Functor}{e1 e1' : J F1 K (m F)}

{e2 e2' : J F2 K (m F)}
→ ∼aF F1 e1 e1' → ∼aF F2 e2 e2'

→ ∼aF (F1 |x| F2) (e1 , e2) (e1' , e2')
∼aB : (xs : List V){S : Sort}{x y : V}

{G : Functor}{e e' : J G K (m F)}
→ ((z : V) → z /∈ xs → ∼aF G (swapF G S x z e)

(swapF G S y z e'))
→ ∼aF (|B| S G) (x , e) (y , e')

∼a : {F : Functor} → m F → m F → Set
∼a = ∼aF |R|

Figure 6.26: Alpha equivalence relation.

Finally, in �gure 6.28 we prove this lemma for the fold operation as a direct recursive case
instance of the previous fold-map lemma.

As a corollary we can directly derive the result in �gure 6.29. This lemma states that the fold
with contexts operator (�gure 6.17) is α-compatible on its context, provided the folded function
is α-compatible on its arguments.

We de�ne other relations over our universe in a similar way as we have done previously for the
α-equivalence relation. For instance the notOccurBind relation (�g. 6.30) holds if some given
variable does not occur in any binder position within a term. Note in this relation we discard the
variables sort information. We do so to simplify our next development as we will explain latter.

We �nally �nd useful the following extension of the previous relation to lists of variables, which
we call ListNotOccurBind, and holds if all the variables in a given list do not occur in any binder
position (associated with any sort) in a term.

ListNotOccurBindF : {F : Functor}(G : Functor)
→ List V → J G K (m F) → Set

ListNotOccurBindF G xs e = All (l x → notOccurBindF x G e) xs

ListNotOccurBind : {F : Functor} → List V → m F → Set
ListNotOccurBind {F} xs e = ListNotOccurBindF |R| xs e

88 CHAPTER 6. GENERIC BINDING FRAMEWORK

lemma-foldmapfa : {F H : Functor}(G : Functor)
{f f ' : J F K (m H) → m H}

→ ({e e' : J F K (m H)} → ∼aF F e e' → f e ∼a f ' e')
→ (e : J G K (m F)) → ∼aF G (foldmap F G f e) (foldmap F G f' e)

lemma-foldmapfa (|v| S) p e = ∼aV
lemma-foldmapfa |1| p e = ∼a1
lemma-foldmapfa {F} |R| p 〈 e 〉

= p (lemma-foldmapfa F p e)
lemma-foldmapfa (|E| x) p e = ∼aE
lemma-foldmapfa (|Ef| G) p e = rF
lemma-foldmapfa (G1 |+| G2) p (inj1 e)

= ∼a+1 (lemma-foldmapfa G1 p e)
lemma-foldmapfa (G1 |+| G2) p (inj2 e)

= ∼a+2 (lemma-foldmapfa G2 p e)
lemma-foldmapfa (G1 |x| G2) p (e1 , e2)

= ∼ax (lemma-foldmapfa G1 p e1)
(lemma-foldmapfa G2 p e2)

lemma-foldmapfa (|B| S G) p (x , e)
= ∼aB [] (l y _ → lemma∼swapEquivF (lemma-foldmapfa G p e) x y)

Figure 6.27: Fold-map function α-compatibility property.

lemma-foldfa : {F H : Functor}{f f ' : J F K (m H) → m H}
→ ({e e' : J F K (m H)} → ∼aF F e e' → f e ∼a f ' e')
→ (e : m F) → fold F f e ∼a fold F f' e

lemma-foldfa {F} p e = lemma-foldmapfa |R| p e

Figure 6.28: Fold function α-compatibility property.

lemma-foldCtxaCtx : {F H C : Functor}
{f : m C → J F K (m H) → m H}{c c′ : m C}

→ ({e e′ : J F K (m H)}{c c′ : m C}
→ c ∼a c′ → ∼aF F e e′ → f c e ∼a f c′ e′)

→ c ∼a c′

→ (e : m F) → foldCtx F f c e ∼a foldCtx F f c′ e
lemma-foldCtxaCtx {F} {f = f} {c} {c′} p c∼c′ e

= lemma-foldfa (p c∼c′) e

Figure 6.29: Fold context function α-compatibility corollary.

Using this relation we are able to prove the lemma in �gure 6.31. This lemma states that the
fold with context principle is α-compatible on its two arguments if the provided function is α-
compatible and well-behaved with respect to swapping. Note that this lemma extends the one
given before in �gure 6.28, although it requires extra freshness premises, and that the folded
function is preserved under swapping.

6.5. ALPHA EQUIVALENCE RELATION. 89

data notOccurBindF (x : V){F : Functor} :
(G : Functor) → J G K (m F) → Set where
notOccurBv : {m : V}{S : Sort}

→ notOccurBindF x (|v| S) m
notOccurB1 : notOccurBindF x |1| tt
notOccurBE : {B : Set}{b : B}

→ notOccurBindF x (|E| B) b
notOccurBEf : {G : Functor}{e : J G K (m G)}

→ notOccurBindF x G e
→ notOccurBindF x (|Ef| G) 〈 e 〉

notOccurBR : {e : J F K (m F)}
→ notOccurBindF x F e
→ notOccurBindF x |R| 〈 e 〉

notOccurBinj1 : {G1 G2 : Functor}{e : J G1 K (m F)}
→ notOccurBindF x G1 e
→ notOccurBindF x (G1 |+| G2) (inj1 e)

notOccurBinj2 : {G1 G2 : Functor}{e : J G2 K (m F)}
→ notOccurBindF x G2 e
→ notOccurBindF x (G1 |+| G2) (inj2 e)

notOccurBx : {G1 G2 : Functor}
{e1 : J G1 K (m F)}{e2 : J G2 K (m F)}

→ notOccurBindF x G1 e1
→ notOccurBindF x G2 e2
→ notOccurBindF x (G1 |x| G2) (e1 , e2)

notOccurBB6≡ : {G : Functor}{e : J G K (m F)}{y : V}{S : Sort}
→ x 6≡ y → notOccurBindF x G e
→ notOccurBindF x (|B| S G) (y , e)

notOccurBind : {F : Functor}(n : V) → (m F) → Set
notOccurBind {F} x = notOccurBindF x {F} |R|

Figure 6.30: OccurBind relation.

lemma-foldCtxa : {F H C : Functor}{f : m C → J F K (m H) → m H}
{c c' : m C}{e e' : m F}

→ ({e e′ : J F K (m H)}{c c′ : m C}
→ c ∼a c′ → ∼aF F e e′ → f c e ∼a f c′ e′)

→ ({c : m C}{S : Sort}{x y : V}{e : J F K (m H)}
→ f (swap S x y c) (swapF F S x y e) ≡ swap S x y (f c e))

→ ListNotOccurBind (fv c) e
→ ListNotOccurBind (fv c') e'
→ c ∼a c' → e ∼a e'
→ foldCtx F f c e ∼a foldCtx F f c' e'

Figure 6.31: Fold context α-compatibility property.

90 CHAPTER 6. GENERIC BINDING FRAMEWORK

6.5.1 Alpha Fold

In this section we present a fold operation that works at the level of α-equivalence classes of
terms, that is, it de�nes α-compatible functions.

First, we introduce the function bindersFreeaElem that takes a list of variables xs and an element
e, and returns an α-compatible fresh element, with its binders not in the given list. This freshness
function will be useful to reproduce the BVC, which basically states that we can always pick a
term with its binders fresh from a given context.

bindersFreeaElem : {F : Functor}(xs : List V)(e : m F)
→ ∃ (l e' → ListNotOccurBind {F} xs e')

This function has the important property of being strong α-compatible, i.e. it returns the same
result for α-convertible terms.

Now, based on this freshness function, we directly implement the α-fold principle in �gure 6.32.

foldCtxa : {C H : Functor}(F : Functor)
→ (m C → J F K (m H) → m H)
→ m C → m F → m H

foldCtxa F f c e = foldCtx F f c (proj1 (bindersFreeaElem (fv c) e))

Figure 6.32: Fold alpha.

This iteration principle �rst �nds a fresh term for a given context c, and then directly applies
the fold operation over it. We developed this iteration principle following a di�erent approach
from the one taken in chapter 4, where we renamed the binders during the fold traverse. In
this de�nition we chose to separate these two stages in order to reuse the previously de�ned fold
operation and its properties.

We can now properly justify the name �alpha� given to the introduced iteration principle. Firstly,
as bindersFreeaElem returns syntactical equal terms when applied to α-convertible terms, we have
that our function is trivially strong α-compatible on its last term argument. Secondly, as a direct
consequence the lemma already proved for our iteration principle foldCtx in �gure 6.29, this new
principle inherits its α-compatibility in its context argument from foldCtx, given that the function
received is also α-compatible on its arguments. Thus, the presented iteration principle works at
the real calculus level when the given function works at the same level of α-equivalence classes.

Now we are able to derive the proper capture avoiding substitution operation for the lambda
calculus example by a direct application of the introduced α-fold principle. In fact this de�nition
is exactly the same as the one given before for the naive substitution in �gure 6.19, but using
now the α-fold operation instead of the fold one.

[:=_] : lTerm → V → lTerm → lTerm
M [x := N] = foldCtxa lF substaux (〈 x , N 〉) M

Figure 6.33: Substitution operation.

The classical substitution lemmas stating that substitution is well-behaved with respect to α-
conversion (�gure 6.34) are directly inherited from the α-compatibility of this iteration principle

6.5. ALPHA EQUIVALENCE RELATION. 91

both on the term and the context to which it is applied . The preceding proof about the α-
compatibility in the context argument requires a direct lemma, named lemma-substaux, about
the substaux function (�gure 6.18), stating that this function is α-compatible.

lemma-substa : {M M′ N : lTerm}{x : V}
→ M ∼a M′ → M [x := N] ≡ M′ [x := N]

lemma-substa {M} {M′} M∼M′
= lemma-foldCtxa-StrongaCompatible {cF} {lF} {lF}

{substaux} M′ M∼M′

lemma-substa′ : {x : V}{M N N′ : lTerm}
→ N ∼a N′ → M [x := N] ∼a M [x := N′]

lemma-substa′ {x} {M} (∼aR N∼N′)
= lemma-foldCtxa-cxta

lemma-substaux (∼aR (∼ax ∼aV (∼aEf N∼N′))) M

Figure 6.34: Substitution lemmas.

Next lemma in �gure 6.35 relates the presented α-fold principle with the previously de�ned one,
giving su�cient conditions under which the two principles return α-convertible terms. First, the
folded function must be α-compatible on its two arguments, and also well-behaved with respect
to swapping. Secondly, we need a freshness premise stating that the free variables in the context
do not occur bound in the applied term.

lemma-foldCtxa-foldCtx : {C H : Functor}(F : Functor)
{f : m C → J F K (m H) → m H}{c : m C}{e : m F}

→ ({e e′ : J F K (m H)}{c c′ : m C} → c ∼a c′ → ∼aF F e e′

→ f c e ∼a f c′ e′)
→ ({c : m C}{S : Sort} {x y : V}{e : J F K (m H)}

→ f (swap S x y c) (swapF F S x y e) ≡ swap S x y (f c e))
→ ListNotOccurBind (fv c) e
→ foldCtxa F f c e ∼a foldCtx F f c e

Figure 6.35: Fold and α-fold relations.

We instantiate the previous lemma to the λ-calculus example in �gure 6.36 to obtain a cor-
responding lemma stating under which conditions the two substitution operations de�ned (�g-
ures 6.19 and 6.33) are α-convertible. Its proof requires two direct lemmas about the substaux
function (�gure 6.18), the �rst one stating that it is α-compatible, and the second one stating
that it is well-behaved under swapping (which was already used to prove the substitution lemma
in �gure 6.25).

6.5.2 Alpha Induction Principle

As we did before in chapter 5, in this section we develop an α-induction principle for α-compatible
predicates, allowing the user to prove properties for terms with binders fresh from a given context
of variables.

We derive this principle following a procedure similar to the one used to infer the principle in
section 6.3.2 . Hence, we de�ne the auxiliary function �ha extending a given predicate P over

92 CHAPTER 6. GENERIC BINDING FRAMEWORK

lemmaSubsts : {z : V}{M N : lTerm}
→ ListNotOccurBind (z :: fv N) M
→ M [z := N] ∼a M [z := N]n

lemmaSubsts {z} {M} {N} nb
= lemma-foldCtxa-foldCtx

{cF} {lF} lF {substaux} {〈 z , N 〉} {M}
lemma-substaux
(l {c} {S} {x} {y} {e} → lemma-substauxSwap {c} {S} {x} {y} {e})
(fv2ctx {z} {M} {N} nb)

Figure 6.36: Substitution operations α-compatibility.

a datatype m F to a predicate over the datatype J G K (m F) (�gure 6.37). The meaning of this
predicate is that P holds for every recursive position m F in a datatype J G K (m F). Besides, this
function adds freshness assertions with respect to some given list xs in the recursive and binder
cases of its de�nition: In the binder case, it states that the binder is not in the given list xs,
while, in the recursive case, it states that no variable in the list xs occurs in a binder position in
its recursive term e.

�ha : {F : Functor}(G : Functor)(P : m F → Set) → List V
→ J G K (m F) → Set

�ha (|v| S) P xs n = >
�ha |1| P xs tt = >
�ha (|E| B) P xs b = >
�ha (|Ef| G) P xs e = >
�ha |R| P xs e = P e ×

(∀ a → a ∈ xs → a notOccurBind e)
�ha (G1 |+| G2) P xs (inj1 e) = �ha G1 P xs e
�ha (G1 |+| G2) P xs (inj2 e) = �ha G2 P xs e
�ha (G1 |x| G2) P xs (e1 , e2) = �ha G1 P xs e1 × �ha G2 P xs e2
�ha (|B| S G) P xs (x , e) = x /∈ xs × �ha G P xs e

Figure 6.37: Alpha induction auxiliary function.

We state and prove this principle in �gure 6.38.

In order to prove it we proceed in a similar way as done in the proof of the α-fold principle.
That is, we �rstly use the function bindersFreeaElem (from section 6.5.1) over the parameter e
and the freshness context xs to get an α-equivalent term e′ with binders not occurring in the list
xs. Then we apply the primitive induction principle (�g. 6.14) over the fresh term e′ to prove
the following predicate P ′:

P ′(x) ≡ (∀c ∈ xs⇒ c notOccurrBind x)⇒ P (x)

Finally, we apply the proof of predicate P ′ to the term e′ and its freshness hypothesis to obtain
that P e′ must hold. Hence, as the predicate P is α-compatible, and e ∼αe′, we �nally get that
P e should also hold.

The proof of P ′ is done using the auxiliary lemma lemma-�h∧notOccurBind⇒�ha. This lemma
recursively reconstructs a proof of �ha P xs e given that �h P xs e holds and that the binders
of e do not occur in the context xs. This proof is just a generalisation of the already presented

6.6. CODIFICATION OF A BVC PROOF TECHNIQUE. 93

aPrimInd : {F : Functor}(P : m F → Set)(xs : List V)
→ aCompatiblePred P
→ ((e : J F K (m F)) → �ha F P xs e → P 〈 e 〉)
→ ∀ e → P e

aPrimInd {F} P xs aP p e
with bindersFreeaElem xs e

| lemma-bindersFreeaAlpha xs e
... | e' , notBind | e'∼e

= aP e'∼e
(foldInd F

(l e → (∀ c → c ∈ xs → c notOccurBind e) → P e)
(l e hi notBind
→ (p e

(lemma-�h∧notOccurBind⇒�ha {F} F P e xs hi
(l c c∈xs → notOccurBRinv (notBind c c∈xs)))))

e'
(get notBind))

Figure 6.38: Alpha induction principle.

in chapter 5 for the strengthened α-induction principle for the lambda calculus in �gure 5.4. In
that chapter we were also able to prove the Church-Rosser theorem for the λ-calculus using an
equivalent induction principle. Therefore, we conjecture that following the same procedure we
would be able to achieve the con�uence of β-reduction result within our generic framework.

6.6 Codi�cation of a BVC proof technique.

In �gure 6.39 we show the proof of a result that validates the BVC and usual practices in pen-
and-paper proofs within our generic framework. It states that for any α-compatible predicate
P , we can prove P e for any term e by just proving it for terms whose binders are all di�erent
from their own free variables and from the variables in an arbitrary list xs.

aProof : {F : Functor}(P : m F → Set)(xs : List V)
→ aCompatiblePred P
→ ((e : m F) → ListNotOccurBind xs e

→ ListNotOccurBind (fv e) e → P e)
→ ∀ e → P e

Figure 6.39: BVC proof principle.

Our presentation introduces an explicit premise about the α-compatibility of the predicate being
proved, which in general is not explicitly mentioned in informal developments, but is required.

To prove P e for arbitrary e we proceed as follows: We �rst �nd a fresh enough term e′ such
that e′ ∼αe using the function bindersFreeaElem. Then, we can use the hypothesis for the fresh
term e′ to derive that P e′ holds. Finally, P e must also hold, as P is α-compatible. We do not
show the code of the proof, since it is similar to others previously presented.

94 CHAPTER 6. GENERIC BINDING FRAMEWORK

Next we illustrate the use of this result to prove the substitution composition lemma for the
System F. First, we prove this lemma for the naive substitution operation. In �gure 6.40 we
introduce the property to be proved. An extra freshness premise stating that x does not occur
bound in the term L is required, since we use the naive substitution.

PSCn : {x y : V}{L : FTerm} → FTerm → FTerm → Set
PSCn {x} {y} {L} N M

= x /∈ y :: fv L
→ x notOccurBind L
→ (M [x := N]n) [y := L]n ∼a (M [y := L]n)[x := N [y := L]n]n

Figure 6.40: Substitution composition property.

We show the proof of this property in �gure 6.41.

lemma-substCompositionN : {x y : V}{M N L : FTerm}
→ PSCn {x} {y} {L} N M

lemma-substCompositionN {x} {y} {M} {N} {L}
= foldInd tF (PSCn {x} {y} {L} N) lemma-substCompositionNAux M

Figure 6.41: Naive substitution composition proof.

The proof is done using the structural induction principle given in �gure 6.14. All the induc-
tive cases are proved inside the auxiliary lemma lemma-substCompositionNAux. We show the
interesting abstraction case of this auxiliary lemma in �gure 6.42.

lemma-substCompositionNAux (inj2 (inj2 (inj1 (t , z , M)))) (_ , hiM)
x/∈yfvL xnbL =

begin
(ň z t M) [x := N]n [y := L]n

≈〈 re� 〉
ň z t (M [x := N]n [y := L]n)

∼〈 ∼aR (∼a+2 (∼a+2 (∼a+1

(∼ax rF
(lemma∼+B (hiM x/∈yfvL xnbL)))))) 〉

ň z t (M [y := L]n [x := N [y := L]n]n)
≈〈 re� 〉

(ň z t M) [y := L]n [x := N [y := L]n]n
�

Figure 6.42: Abstraction case of the naive substitution composition lemma.

This equational proof is constructed following the usual pen-and-paper practice: First we push
the substitution inside the abstraction, then, by the inductive hypothesis we know that the
composition of substitutions in the abstraction bodies are α-convertible, and hence we are able
to prove that the entire abstraction is α-convertible too, using the auxiliary lemma lemma∼+B.
Finally, we push back the substitutions outside the abstraction to conclude the proof.

Now we prove the substitution composition lemma for the capture-avoiding substitution oper-
ation using the introduced α-proof technique. We begin by de�ning the functor describing a

6.6. CODIFICATION OF A BVC PROOF TECHNIQUE. 95

triplet of terms TreeTermF. Then, we introduce the predicate PSComp over triplets, stating the
composition lemma for the substitution.

TreeFTermF = |Ef| tF |x| |Ef| tF |x| |Ef| tF
TreeFTerm = m TreeFTermF

PSComp : {x y : V} → TreeFTerm → Set
PSComp {x} {y} 〈 M , N , L 〉 = x /∈ y :: fv L
→ (M [x := N]) [y := L] ∼a (M [y := L])[x := N [y := L]]

Figure 6.43: Substitution composition property.

We need to prove that PSComp is α-compatible with respect to triplets of terms. In �gure 6.44
we show its proof. It uses pattern-matching on the α-equivalence premise for the triplet in
order to obtain the α-equivalence of each of its terms. Then, we carry out an equational proof
using basically the previous substitution lemmas and the inductive hypotheses. We have added
comments to the proof derivation, explaining each of its steps.

In �gure 6.45 we show the core of the proof. It uses the preceding substitution lemmas to replace
the classical substitution operations with the naive ones. This can be done because we have
freshness premises stating that in the introduced triplet context all binders are di�erent from
the free variables in the involved terms, and also from variables x and y. Finally, we work in a
very much the same way as we did at the beginning to recover the classical substitutions from
the naive ones.

There are many auxiliary lemmas and boilerplate code concerning the freshness premises involved
in the last proof which we do not show in this presentation. These are hidden inside auxiliary
lemmas as: y:fvL/∈bM[x:=N]n and y:fvL/∈bN occurring in the previous proof. The �rst of these
lemmas, for instance, proves that neither the variable y nor the free variable binding in L occur
bound in M [x:=N]n, which is easy to informally verify from the freshness premises. However,
we believe further work is necessary to automatise some of these proofs, or even rewriting the
freshness relations in order to alleviate its handling.

Finally, in �gure 6.46 we use the introduced α-proof principle with the previous proof obligations
to �nish the proof.

Note how, by applying the α-proof technique to a triplet of terms, we were able to get su�cient
freshness premises to develop a proof similar in structure to pen-and-paper ones in a direct
manner. This is possible because in our generic framework we can state the α-equivalence of any
structure (triplets in this case), and not just language terms.

96 CHAPTER 6. GENERIC BINDING FRAMEWORK

aCompatiblePSComp : ∀ {x y : V}
→ aCompatiblePred {TreeFTermF} (PSComp {x} {y})

aCompatiblePSComp {x} {y} {〈 M , N , L 〉} {〈 M′ , N′ , L′ 〉}
(∼aR (∼ax M∼M′ (∼ax N∼N′ L∼L′))) PMs x/∈y:fvL′

= begin
(M′ [x := N′]) [y := L′]

� Strong a compability of inner substitution operation

≈〈 cong (l z → z [y := L′]) (lemma-substa (s M∼M')) 〉
(M [x := N′]) [y := L′]

� Strong a compability of outter substitution operation

≈〈 lemma-substa {M [x := N′]} {M [x := N]}
(lemma-substa′ {x} {M} (s N∼N')) 〉

(M [x := N]) [y := L′]
� Outter substitution is alpha-compatible in its substituted argument

∼〈 lemma-substa′ {y} {M [x := N]} (s L∼L') 〉
(M [x := N]) [y := L]

� Application of the inductive hypothesis

∼〈 PMs x/∈y:fvL 〉
(M [y := L]) [x := N [y := L]]

� Strong a compability of inner substitution operation

≈〈 cong (l P → P [x := N [y := L]])
(lemma-substa M∼M') 〉

(M′ [y := L]) [x := N [y := L]]
� Inner substitution is alpha-compatible in its substituted argument

≈〈 lemma-substa {M′ [y := L]} {M′ [y := L′]}
{N [y := L]} {x}
(lemma-substa′ {y} {M′} L∼L') 〉

(M′ [y := L′]) [x := N [y := L]]
� Strong a compability of substitution operation in subsituted term

≈〈 cong (l P → (M′ [y := L′]) [x := P])
(lemma-substa N∼N') 〉

(M′ [y := L′]) [x := N′ [y := L]]
� Outter substitution is alpha-compatible in its substituted argument

∼〈 lemma-substa′ {x} {M′ [y := L′]} {N′ [y := L]}
(lemma-substa′ {y} {N′} L∼L') 〉

(M′ [y := L′]) [x := N′ [y := L′]]
�

Figure 6.44: PSComp predicate α-compatibility.

6.6. CODIFICATION OF A BVC PROOF TECHNIQUE. 97

aproof : {x y : V}(Ms : m TreeFTermF)
→ ListNotOccurBind (x :: y :: []) Ms
→ ListNotOccurBind (fv Ms) Ms
→ PSComp {x} {y} Ms

aproof {x} {y} 〈 M , N , L 〉 nOcc nOcc2 x/∈y:fvL
= begin

(M [x := N]) [y := L]
≈〈 lemma-substa {M [x := N]}

(lemmaSubsts {x} {M} {N} x:fvN/∈bM) 〉
M [x := N]n [y := L]

∼〈 lemmaSubsts {y} {M [x := N]n} {L} y:fvL/∈bM[x:=N]n 〉
M [x := N]n [y := L]n

∼〈 lemma-substCompositionN {x} {y} {M} {N} {L}
x/∈y:fvL x/∈bL 〉

M [y := L]n [x := N [y := L]n]n
∼〈 lemma-substna′ {x} {M [y := L]n}

(s (lemmaSubsts {y} {N} y:fvL/∈bN)) 〉
M [y := L]n [x := N [y := L]]n

∼〈 s (lemmaSubsts {x} {M [y := L]n} {N [y := L]}
x:fvN[y:=L]/∈bM[y:=L]n) 〉

M [y := L]n [x := N [y := L]]
≈〈 lemma-substa (s (lemmaSubsts {y} {M} {L} y:fvL/∈bM)) 〉

(M [y := L]) [x := N [y := L]]
�

Figure 6.45: Proof of Substitution composition lemma.

lemma-substComposition2 : {x y : V}{Ms : TreeFTerm}
→ PSComp {x} {y} Ms

lemma-substComposition2 {x} {y} {〈 M , N , L 〉}
= aProof (PSComp {x} {y})

(x :: y :: [])
(aCompatiblePSComp {x} {y})
aproof
〈 M , N , L 〉

Figure 6.46: Proof of Substitution composition lemma using α-proof principle.

98 CHAPTER 6. GENERIC BINDING FRAMEWORK

CHAPTER 7

Conclusions

There exists a great interest in the use of proof assistants for the formalisation of programming
languages. However, in spite of the amount of work carried out in this area, the community
remains fragmented on the central issue of how to represent the abstract syntax, and in par-
ticular, how to represent bound variables. There exists a collection of di�erent name binding
representation techniques, with no one coming up as a clear optimal solution. Acknowledging
this fact, Aydemir et al. in [3] proposed the POPLmark challenge, a set of tasks designed to
evaluate the many proposals, pointing out critical issues that usually arise in the formalisation
of programming languages.

Our work goes after those criteria, looking for a representation as close to pencil-and-paper
informal practice as possible, while remaining formal. The usual informal procedure consists in
identifying terms up to α-conversion. However, this is not easily carried out when functions are
de�ned by recursion and properties are proven by induction over abstract syntax terms. The
problem has to do with the fact that the consideration of the α-equivalence classes is in general
actually conducted through the use of convenient representatives. These are chosen by the so-
called Barendregt variable convention (BVC [4]), which basically states that we can consider each
term to have bound names di�erent from names free in the context of a proof. This usual informal
practice collides with the primitive induction principles automatically derived from the inductive
de�nition of the abstract syntax by nowadays proof assistants, which require proof obligations
quanti�ed over arbitrary terms, and not over α-equivalence classes, or as in the informal practice,
over convenient representatives.

In chapter 3 we pursued the traditional approach to the λ-calculus metatheory, treating the
calculus in its original syntax with one sort of names (for both free and bound variables), with
an α-conversion de�nition based on the substitution operation, and working all the time with
concrete terms, i.e. without identifying terms up to α-conversion. We have corroborated that
this approach can be carried out in a completely formal way, so as to scale up to the principal
results of the theory. This is possible by the use of Stoughton's multiple substitution operation,
introduced in [61]. We believe our main contribution consists in presenting Stoughton's theory
of substitutions in a new way, based upon the notion of restriction of a substitution to the free
variables of a term. Because of this we can use the corresponding �nite notions of equality
and α-equivalence, whereas Stoughton and other formalisations (Lee, [33]) use extensional, and
thus generally undecidable, equality. Moreover, we de�ne a strictly syntax-directed inductive
de�nition of the α-equivalence relation, which is easily proven to be an equivalence relation,

99

100 CHAPTER 7. CONCLUSIONS

and therefore a congruence. This stands in contrast to Stoughton's work, which starts with
a de�nition of α-conversion as the least congruence generated by a simple renaming of the
bound variable �a de�nition comprising six rules, whereas ours consists of three. Stoughton's
whole development is directed towards characterising α-conversion in the form of a syntax-based
de�nition that contains nevertheless two rules corresponding to abstractions. This therefore
gives a neat result standing in correspondence with ours; but the proof is surprisingly dilatory,
requiring among others the substitution lemma for α-conversion. The issue manifests itself also
in a rather involved character of Lee's formalisation, as witnessed by his own comments.

Within the general approach to syntax chosen, the main work to compare with ours is Vestergaard
and Brotherston's [68], which is indeed quite successful in using modi�ed rules of α-conversion and
β-reduction, with added freshness premises. They work with the naive substitution operation,
i.e. at the raw calculus level, to formally prove the Church-Rosser theorem at the real calculus
level in Isabelle-HOL. However, this mixture of levels results in a rather complicated proof of
the β-con�uence property. We have completed a development equivalent to theirs in scope, but
based on a capture-avoiding multiple substitution operation, working always at the raw calculus
level.

In chapter 4 we have explored an approach based on the simpler swapping operation, from
which we have derived principles of induction and recursion allowing us to work on α-classes of
λ-terms. The crucial component is what we have called a BVC-like induction principle. This
principle allows us to choose the bound name in the case of the abstractions so that it does not
belong to a given list of names. This principle (for α-compatible predicates) is derived from
ordinary structural induction on concrete terms, thus avoiding any form of induction on the size
of terms, or other more complex forms of induction. On the other hand, it gives rise to principles
of recursion that allow to de�ne functions on α-classes, speci�cally, functions giving identical
results for α-equivalent terms.

Our work departs from Pitts and Gabbay's [24,53] because we do �x the choice of representatives
for implementing the alpha-structural recursion thereby forcing this principle to yield identical
results for α-equivalent terms. This might be a little too concrete but, on the other hand, it gives
us the possibility of completing a simple full implementation on an existing system, as di�erent
from other works which base themselves on postulates or more sophisticated systems of syntax,
or methods of implementation.

There exist a continuous line of work studying name based formalisations of the λ-calculus
including structural induction principles, where the abstraction case needs to be proved for only
fresh binders, that is, trying to resemble the BVC. However, we depart from these works as we
stick to a �rst order syntax while these works are based in variations of the HOL technique.

In chapter 5 we have proposed a novel strengthened alpha-induction principle on λ-terms that
allows us to emulate the BVC in the proof of the substitution lemma for the parallel β-reduction,
which was not possible with the original formulation. Using this principle, our formalisation
scales up to the β-con�uence theorem. We have also proved the preservation of typing under
α-equivalence and β-reduction for the simply typed λ-calculus à la Curry using our induction
principle. Besides, for the crucial substitution lemma for the typing relation, we are able to carry
out the subject reduction theorem using the original alpha induction principle, since our typing
contexts can contain repeated variables.

In summary, we have proved the β-reduction con�uence and the subject reduction theorems
for the λ-calculus within two completely di�erent formalisations in Agda. In spite of the fact
that the �rst one sticks more closely to the usual practice of using the substitution operation

101

in the de�nition of the crucial α-conversion relation, the development required a very subtle
notion of restriction of a substitution to the free variables of a term. Indeed, it was a nice novel
introduction, although it departs from usual pen-and-paper proofs. On the other hand, our
second experiment using an α-conversion de�nition is based on the simpler swapping operation,
and in this way it departs from the classical metatheory. But at the same time, it reaches a great
level of abstraction by being able to mimic the BVC technique through the use of the introduced
α-induction principles. Those principles allow us to hide most of the complexity introduced by
the named syntax.

With the gained experience after applying nominal techniques within the λ-calculus framework,
in the last chapter we have addressed the formalisation of a general �rst order named syntax with
multi-sorted binders. We have done so by applying a combination of generic programming and
nominal techniques to derive fold operations, variable swapping, the α-conversion relation, and
α-induction/iteration principles for any language abstract syntax with binders. We have suc-
cessfully derived the λ-calculus and System F as instances of the introduced general framework.
For these examples we were able to derive both the naive and the capture-avoiding substitutions
as direct instances of the corresponding fold and α-fold principles. We directly inherited the
classical substitution lemmas for the α-conversion, and the good behavior of substitution under
the swapping operation from fold properties already proved. We also proved at the general level
a lemma stating su�cient conditions under which the fold and α-fold functions are α-equivalent.
Therefore, as substitution operations are direct instances of these iteration principles, we get in
an almost free manner a result about the relation between the naive and the capture-avoiding
substitution operations for the λ-calculus and System F. This result is particularly useful in the
proof of the crucial substitution composition lemma, which is conducted using an introduced α-
proof technique, that enables use to mimic the BVC in a more general way than the one explored
in previous chapters through the use of term induction.

Further Work

We believe a more systematic comparison of the many works addressing the binding issue in the
context of proof assistants is required. However, such work constitutes in itself a methodological
challenge, among other things requiring the mastering of several proof assistants. Because of this
we have not pursued this goal in the present work.

It would be interesting to extend our presented formalisations with more results of the metatheory
of λ-calculus, in order to study how well our formalisations scale up with these extensions.
In particular, the Standarisation Theorems, and the Normalisation and Strong Normalisation
Theorems for the system of assignment of simple types would be important extensions to be
addressed in future work.

Another possible extension is developing alpha induction and iteration principles, as we have done
using nominal techniques, based on Stoughton's multiple substitution. Although our principles
were based on swapping operation, we think it is feasible to interchange this operation with
Sthoughton's multiple substitution, and recover the same principles. In this way, we believe
some �nal proofs can be carried out in a simpler manner, in particular, avoiding some explicit
renaming substitutions within them.

The presented de�nitions of parallel reduction relation in chapters 3 and 5 di�er from pen-and-
paper original ones. Indeed, we had to make them α-compatible by de�nition, that is, they must
be preserved by α-conversion, whereas in pen-and-paper works this is not necessary because it

102 CHAPTER 7. CONCLUSIONS

is usually accepted to equate α-convertible terms, in spite of the fact of being working with
raw terms. Because of this, our parallel reduction de�nition had to explicitly introduce the
independence from any particular choice of binder names in its de�nition. This is reasonable
as we are ultimately trying to prove properties at the real calculus level while working at the
raw one. However, the modi�cations in the de�nitions of the relations introduce noise in the
rest of the formalisation, departing from the usual informal practice. For example, in chapter 3
we must introduce the concept of the postponement of the α-conversion introduction rule in the
presented parallel reduction, whereas, in chapter 5, we have introduced an alternative parallel
relation de�nition that includes the α-conversion de�nition rules in it. However, in this last case,
after proving that the relation is α-compatible, we have been able to recover the usual de�nition
of the parallel reduction through the introduction of suitable inversion lemmas, which allowed
us to continue the formalisation as if our de�nition were Takahasi's one.

At the end of the last chapter we continue working at the raw level, but under BVC premises,
as in the proof of the substitution composition lemma. We have continued exploring this line
of work within our generic framework, studying alternative solutions to the previously described
problems in the de�nition of the parallel relation, which be believe could emulate the elegant
development of Barendregt, scaling it up to the Church-Rosser con�uence result. As it can derived
from Hindley's lemma 1.20 in [29], we can work under BVC preconditions at the raw level, using
the naive substitution, and then lift the results to the real level replacing term's identity by
α-equivalence relation, and naive substitution for the capture avoiding one, and all theorems at
will stay true. The explored line of work follows this idea, working as far as possible under BVC
premises, at the raw level but under enough freshness premises. This freshness premises allows
us to work with the simpler naive substitution operation and syntactical equality, keeping the
formalisation simpler, as no renamings are done by the naive substitution, while the freshness
premises prevents from any variable capture occurrence.

We would like to continue developing the presented binding generic framework and developing
the previously discussed line of work. We are particular interested in studying the possibility
of automating certain proofs using the Agda's re�ection mechanism. In [67] it is explored re-
cent additions to the Agda proof assistant enabling re�ection, in the style of Lisp and Template
Haskell's compile time meta-programming. Basically, Agda's re�ection mechanisms make it pos-
sible to convert a program fragment into its corresponding abstract syntax tree and vice versa.
The idea behind proof by re�ection is: given that type theory is both a programming language
and a proof system, it is possible to de�ne functions that compute proofs. Therefore, re�ection
introduces the possibility of mechanically constructing a proof of a theorem by inspecting its
shape. First, we can directly use this re�ection mechanism to provide an automatic isomorphism
between an user given datatype with binders annotations, to a codi�cation in our generic pro-
gramming universe. In this way we would be able to avoid the boilerplate code introduced by
the codes of our generic universe. This solution is provided for a similar universe within the Coq
proof assistant in [34], whereas in [67] an isomorphism is given for some �xed Agda's datatype,
showing this is feasible nowadays in Agda. However, re�ection mechanism seems not to be still
a stable feature in Agda, and it has su�ered several modi�cations in the lasts Agda releases,
which has restrained us from its use in our development. Secondly, we believe that the overhead
introduced by proof obligations about freshness premises can be automatised using re�ection.
By doing so our framework would be able to mimic common practice without any overhead. It
also remains studying the possible rephrasing of the various freshness relations introduced in the
generic framework, in order to alleviate its burden, and by the way facilitate the desired level of
automatisation.

Bibliography

[1] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal reasoning techniques in
Coq. Electronic Notes in Theoretical Computer Science, 174(5):69�77, June 2007.

[2] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering Formal Metatheory. ACM SIGPLAN Notices, 43(1):3�15, January
2008.

[3] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geo�rey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized metatheory for the masses: The poplmark challenge. In Proceed-
ings of the 18th International Conference on Theorem Proving in Higher Order Logics,
TPHOLs'05, pages 50�65, Berlin, Heidelberg, 2005. Springer-Verlag.

[4] Hendrik Barendregt. The λ-calculus Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North Holland, revised edition, 1984.

[5] Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs and proofs
in dependent type theory. Nordic J. of Computing, 10(4):265�289, December 2003.

[6] Ana Bove and Peter Dybjer. Language engineering and rigorous software development.
chapter Dependent Types at Work, pages 57�99. Springer-Verlag, Berlin, Heidelberg, 2009.

[7] Arthur Charguéraud. The Locally Nameless Representation. Journal of Automated Reason-
ing, 49(3):363�408, 2012.

[8] James Cheney. Scrap your Nameplate (Functional Pearl). In ICFP 2005, pages 180�191.
ACM, 2005.

[9] Adam Chlipala. A certi�ed type-preserving compiler from λ-calculus to assembly language.
In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI '07, pages 54�65, New York, NY, USA, 2007. ACM.

[10] Alonzo Church. A set of postulates for the foundation of logic part I. Annals of Mathematics,
33(2):346�366, 1932.

[11] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56�68, 1940.

[12] Ernesto Copello. Inferencia de tipos de sesión. Master's thesis, Universidad ORT Uruguay,
2012.

103

104 BIBLIOGRAPHY

[13] Ernesto Copello, Álvaro Tasistro, Nora Szasz, Ana Bove, and Maribel Fernández. Alpha-
structural induction and recursion for the λ-calculus in constructive type theory. Electronic
Notes in Theoretical Computer Science, 323:109 � 124, 2016.

[14] Ernesto Copello, Nora Szasz, and Álvaro Tasistro. Formal metatheory of the lambda calculus
using Stoughton's substitution. Theoretical Computer Science, 685:65 � 82, 2017.

[15] T. Coquand. An Algorithm for Testing Conversion in Type Theory. In G. Huet and
G. Plotkin, editors, Logical Frameworks, pages 255�279. Cambridge University Press, Cam-
bridge, 1991.

[16] H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-Holland, 1958. Second
printing 1968.

[17] N. G. de Bruijn. λ-calculus Notation with Nameless Dummies, A Tool for Automatic For-
mula Manipulation, with Applications to the Church-Rosser Theorem. Indagationes Math-
ematicae (Koninglijke Nederlandse Akademie van Wetenschappen), 34(5):381�392, 1972.

[18] Joëlle Despeyroux, Amy P. Felty, and André Hirschowitz. Higher-Order Abstract Syntax
in Coq. In Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin, editors, TLCA, volume
902 of Lecture Notes in Computer Science, pages 124�138. Springer, 1995.

[19] Peter Dybjer. Inductive sets and families in martin-löf's type theory and their set-theoretic
semantics. In Logical Frameworks, pages 280�306. Cambridge University Press, 1991.

[20] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic (2. ed.).
Undergraduate texts in mathematics. Springer, 1994.

[21] Jonathan M. Ford and Ian A. Mason. Operational Techniques in PVS - A Preliminary
Evaluation. Electronic Notes in Theoretical Computer Science, 42:124�142, 2001.

[22] G. Frege. Begri�sschrift, eine der Arithmetischen Nachgebildete Formelsprache des Reinen
Denkens. Halle, 1879. English translation in From Frege to Gödel, a Source Book in
Mathematical Logic (J. van Heijenoort, Editor), Harvard University Press, Cambridge, 1967,
pp. 1�82.

[23] Murdoch J. Gabbay. Foundations of nominal techniques: Logic and semantics of variables
in abstract syntax. The Bulletin of Symbolic Logic, 17(2):161�229, 2011.

[24] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13(3�5):341�363, July 2001.

[25] Gerhard Gentzen. The Collected Papers of Gerhard Gentzen. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1969. Edited by M. E. Szabo.

[26] J.Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1989.

[27] Andrew D. Gordon. A Mechanisation of Name Carrying Syntax up to Alpha Conversion.
In Proceedings of Higher Order Logic Theorem Proving and its Applications, Lecture Notes
in Computer Science, pages 414�426, 1993.

[28] Andrew D. Gordon and Thomas F. Melham. Five Axioms of Alpha-Conversion. In Theorem
Proving in Higher Order Logics, 9th International Conference, TPHOLs'96, Turku, Finland,
August 26-30, 1996, Proceedings, pages 173�190, 1996.

BIBLIOGRAPHY 105

[29] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda-
Calculus. Cambridge University Press, 1986.

[30] Peter V. Homeier. A Proof of the Church-Rosser Theorem for the λ-calculus in Higher Order
Logic. In TPHOLs'01: Supplemental Proceedings, pages 207�222, 2001.

[31] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In In ESOP'98, volume 1381
of LNCS, pages 122�138. Springer-Verlag.

[32] Jean-Louis Krivine. Lambda-Calculus, Types and Models. Ellis Horwood series in computers
and their applications. Masson, 1993.

[33] Gyesik Lee. Proof Pearl: Substitution Revisited, Again. Hankyong National University,
Korea. http://formal.hknu.ac.kr/Publi/Stoughton.pdf.

[34] Gyesik Lee, Bruno C. D. S. Oliveira, Sungkeun Cho, and Kwangkeun Yi. GMeta: A Generic
Formal Metatheory Framework for First-Order Representations, pages 436�455. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[35] Xavier Leroy. Formal veri�cation of a realistic compiler. Commun. ACM, 52(7):107�115,
July 2009.

[36] Daniel R. Licata and Robert Harper. A universe of binding and computation. In Interna-
tional Conference on Functional Programming (ICFP), pages 123�134, September 2009.

[37] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Lecture
Notes. Bibliopolis, Naples, 1984. Notes by Giovanni Sambin.

[38] Helmut Schwichtenberg Masahiko Sato, Randy Pollack and Takafumi Saku-
rai. Viewing Lambda-terms Through Maps, 2013. Available from
http://homepages.inf.ed.ac.uk/rpollack/export/Maps_SatoPollackSchwichtenbergSakurai.pdf.

[39] The Coq development team. The Coq proof assistant reference manual. LogiCal Project,
2012. Version 8.0.

[40] J. McKinna and R. Pollack. Some λ-calculus and Type Theory Formalized. Journal of
Automated Reasoning, 23(3�4), November 1999.

[41] Dale Miller and Gopalan Nadathur. A logic programming approach to manipulating formulas
and programs. Technical report, Durham, NC, USA, 1987.

[42] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT Press,
Cambridge, MA, USA, 1990.

[43] Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the regular tree types.
In Proceedings of the 2004 International Conference on Types for Proofs and Programs,
TYPES'04, pages 252�267, Berlin, Heidelberg, 2006. Springer-Verlag.

[44] Tobias Nipkow. Programming and Proving in Isabelle/HOL, 2016. Available from
https://isabelle.in.tum.de/doc/prog-prove.pdf.

[45] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf's Type
Theory. Oxford University Press, 1990.

106 BIBLIOGRAPHY

[46] Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory.
PhD thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, September 2007.

[47] Ulf Norell. Dependently typed programming in agda. In Proceedings of the 4th International
Workshop on Types in Language Design and Implementation, TLDI '09, pages 1�2, New
York, NY, USA, 2009. ACM.

[48] Michael Norrish. Recursive Function De�nition for Types with Binders. In In Seventeenth
International Conference on Theorem Proving in Higher Order Logics, pages 241�256, 2004.

[49] H. Pfeifer and H. Ruess. Polytypic abstraction in type theory. In Roland Backhouse and
Tim Sheard, editors, Workshop on Generic Programming (WGP'98). Dept. of Computing
Science, Chalmers Univ. of Technology, and Göteborg Univ., June 1998.

[50] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation, PLDI
'88, pages 199�208, New York, NY, USA, 1988. ACM.

[51] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.

[52] A. M. Pitts. Nominal Techniques. ACM SIGLOG News, 3(1):57�72, January 2016.

[53] Andrew M. Pitts. Nominal Logic, a First 0rder Theory of Names and Binding. Information
and Computation, 186(2):165�193, 2003.

[54] Andrew M. Pitts. Alpha-Structural Recursion and Induction. Journal of the ACM,
53(3):459�506, May 2006.

[55] Randy Pollack. Closure under alpha-conversion. In Proceedings of the International Work-
shop on Types for Proofs and Programs, TYPES '93, pages 313�332, Secaucus, NJ, USA,
1994. Springer-Verlag New York, Inc.

[56] Dag Prawitz. Natural Deduction: a Proof-Theoretical Study. Number 3 in Stockholm Studies
in Philosophy. Almquist and Wiskell, 1965.

[57] György E. Révész. Lambda-Calculus, Combinators and Functional Programming, volume 4
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1988.

[58] Carsten Schurmann, Joelle Despeyroux, and Frank Pfenning. Primitive recursion for higher-
order abstract syntax. Theor. Comput. Sci., 266(1-2):1�57, September 2001.

[59] Mark R. Shinwell. Fresh o'caml: Nominal abstract syntax for the masses. Electronic Notes
in Theoretical Computer Science, 148(2):53 � 77, 2006.

[60] Mark R. Shinwell, Andrew M. Pitts, and Murdoch James Gabbay. Freshml: programming
with binders made simple. SIGPLAN Notices, 38(9):263�274, 2003.

[61] A. Stoughton. Substitution revisited. Theor. Comput. Sci., 59:317�325, 1988.

[62] M. Takahashi. Parallel Reductions in λ-Calculus. Information and Computation, 118(1):120
� 127, 1995.

[63] Alvaro Tasistro, Ernesto Copello, and Nora Szasz. Principal type scheme for session types.
International Journal of Logic and Computation, 3(1):34�43, 2012.

BIBLIOGRAPHY 107

[64] Alvaro Tasistro, Ernesto Copello, and Nora Szasz. Formalisation in Constructive Type The-
ory of Stoughton's Substitution for the λ-calculus. Electronic Notes in Theoretical Computer
Science, 312:215�230, 2015.

[65] Christian Urban and Michael Norrish. A formal treatment of the Barendregt variable conven-
tion in rule inductions. In Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized
Reasoning About Languages with Variable Binding, MERLIN '05, pages 25�32, New York,
NY, USA, 2005. ACM.

[66] Christian Urban and Christine Tasson. Nominal Techniques in Isabelle/HOL. In Robert
Nieuwenhuis, editor, Automated Deduction � CADE-20, volume 3632 of Lecture Notes in
Computer Science, pages 38�53. Springer Berlin Heidelberg, 2005.

[67] Paul van der Walt and Wouter Swierstra. Engineering Proof by Re�ection in Agda, pages
157�173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[68] René Vestergaard and James Brotherston. A Formalised First-Order Con�uence Proof
for the λ-Calculus using One-Sorted Variable Names. Information and Computation,
183(2):212�244, 2003.

[69] Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and type discipline for
structured communication-based programming revisited: Two systems for higher-order ses-
sion communication. Electronic Notes in Theoretical Computer Science, 171(4):73 � 93,
2007.

	Introduction
	Context
	The Problem
	Structure of this Thesis

	State of the Art
	Nominal Syntax
	Nameless Syntax
	Higher Order Abstract Syntax
	Conclusions

	Stoughton's Multiple Substitution
	Introduction
	Substitution
	Alpha-conversion
	Beta-Reduction and the Church-Rosser Theorem
	Assignment of Simple Types
	Conclusions

	Substitution Lemmas
	Introduction
	Infrastructure
	Alpha-Structural Induction and Recursion Principles
	Applications in Meta-Theory
	Conclusions
	Appendix: Iteration/Recursion Applications

	Church-Rosser and Subject Reduction
	Introduction
	Preliminaries
	Alpha Induction Principles
	Parallel Beta Reduction
	Assignment of Simple Types
	Conclusions

	Generic Binding Framework
	Introduction
	Related work
	Regular Tree Universe with Binders
	Map and Fold
	Primitive Induction
	Fold with Context Information

	Name Swapping
	Alpha Equivalence Relation.
	Alpha Fold
	Alpha Induction Principle

	Codification of a BVC proof technique.

	Conclusions

